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Defining the boundaries: challenges and advances in 
identifying cells in microscopy images
Nodar Gogoberidze and Beth A Cimini

Segmentation, or the outlining of objects within images, is a 
critical step in the measurement and analysis of cells within 
microscopy images. While improvements continue to be made 
in tools that rely on classical methods for segmentation, deep 
learning-based tools increasingly dominate advances in the 
technology. Specialist models such as Cellpose continue to 
improve in accuracy and user-friendliness, and segmentation 
challenges such as the Multi-Modality Cell Segmentation 
Challenge continue to push innovation in accuracy across 
widely varying test data as well as efficiency and usability. 
Increased attention on documentation, sharing, and evaluation 
standards is leading to increased user-friendliness and 
acceleration toward the goal of a truly universal method.
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Introduction
Segmentation plays a pivotal role in microscopy analysis 
and refers to the automatic delineation of individual 
objects (often cells or cellular components) within 
complex scientific images. It is an important step before 
measuring properties of those biological entities. 
Approaches for cell segmentation have benefitted from 
advancements in more general segmentation problems 
in traditional computer vision (CV), machine learning 
(ML), and in recent years deep learning (DL) [1,2]. 
Accurate segmentation allows the quantification and 
analysis of cellular features, such as morphology, staining 
intensity, and spatial relationships, which capture valu-
able cellular phenotypes. While computational methods 
now achieve better-than-human accuracy on a number of 
specific tasks, in general, given the wide range of cell 

types, imaging modalities, and experimental conditions, 
the problem remains an ongoing challenge.

As state-of-the-art (SOTA) methodologies for segmen-
tation have progressed, the community has also tried to 
provide access to these methods to less-computational 
users in the form of user-friendly software interfaces and 
intuitive tools that improve reproducibility. Widespread 
adoption will require methods with few-or-no tunable 
parameters, models that are efficient in terms of com-
putational runtime and memory requirements, and an 
ecosystem of tools for their use. The past two years re-
viewed here have seen a proliferation of new local and 
cloud-oriented software and workflows, the adoption of 
several user-oriented models, and the development of 
next-generation model architectures. We herein review 
progress in approaches utilizing classical CV techniques 
and specialist DL networks, as well as progress to-
ward and current needs related to making high-quality- 
accessible generalist networks that will reduce the ‘time 
to science’ for the broader community.

Progress in classical approaches
While advancements in segmentation accuracy are lar-
gely driven via DL approaches, they are not always a 
suitable solution, as some require large annotated data-
sets and interpretability (though often unnecessary for 
segmentation tasks) can be a challenge [3,4]. We there-
fore begin with advancements in non-deep ML and 
classic image processing. Kartezio [5] is a recent ex-
emplar of non-deep ML, using Cartesian Genetic Pro-
gramming to combine classic CV algorithms into a fully 
interpretable image pipeline for segmentation. It per-
forms comparably to DL approaches such as Cellpose 
[6], StarDist [7], and Mask R-CNN [8], and importantly 
requires relatively few images to train a computationally 
efficient and explainable workflow.

Existing CV tools such as Fiji/ImageJ [9], CellProfiler 
[10], and Napari [11] are receiving continuous extensions 
via the growing ecosystem of plugins and integrations 
[1,12–15], allowing these tools to adapt to a broader 
range of tasks. One example, General Image Analysis of 
Nuclei-based Images [16], is a Fiji plugin for segmen-
tation of cells in 3D microscopy images. Similarly, 
LABKIT [17] is a Fiji plugin specifically oriented to-
ward efficient segmentation in large, multiterabyte, 
images. Other tools such as Tonga [18] prioritize ease of 
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installation and customization to a specific task to appeal 
to nontechnical and nonexpert users.

Lowering time-to-science in deep learning
As new DL models rapidly emerge, users who want to 
employ them must surmount computational hurdles. 
First, installing the models and their corresponding soft-
ware dependencies can often be technically complex and 
time-consuming, often involving usage of the Command 
Line Interface (CLI), compiling source code, navigating 
environment-related conflicts, and other tasks that may 
confound nontechnical users. Second, pretrained models 
are most effective on the type of data they have been 
trained on, which may differ from a user’s data in a 
number of ways such as the phenotype of interest, how 
the biological samples were prepared, the imaging mod-
ality (fluorescence, histological stains, phase contrast, 
etc.), and the experimental conditions. The model’s gen-
erality is how well it is able to perform across these dif-
ferences, without loss in segmentation accuracy. If the 
model’s generality is not sufficient to perform well on the 
user’s data, it must be fine-tuned by feeding in new 
training data (Figure 1). The complexity of this task can 
vary even more dramatically than installation. Depending 
on the tools made available by the model’s developers, it 
may involve writing custom code, which can be a time- 
intensive task even for expert programmers, or may 
simply require the use of a purpose-built tool.

The less time spent installing, tuning, and configuring 
models and software, the more bandwidth is available to 
concentrate on addressing scientific questions. 
Unfortunately, usability varies wildly across tools and 
documentation for trained DL models, from only the 
model parameters (weights) without documentation or 
source code, to models that come with extensive doc-
umentation and entire libraries for utilizing the model, 
including data loading and processing, fine-tuning, and 
configuration, to models that come with several inter-
faces, including CLI or Graphical User Interfaces (GUI), 
easy-to-use installers, and guides or tutorials on how to 
fine-tune and configure the model. It is no accident that 
some of the most commonly used networks, discussed 
below, are those that in addition to high performance 
have emphasized usability.

Current progress toward useful specialist networks
As shown in Figure 1, models typically underperform on 
new, unseen data. Before fine-tuning, these data are 
considered out of distribution (OOD). Intuitively, OOD 
data can be thought of as being drawn from a different 
distribution than that of the original training set (such as 
the purple versus green cells in Figure 1). A shift be-
tween the in-distribution training set and OOD data can 
be referred to as a difference in style between the two 
sets of data, for instance, differences in acquisition 

parameters, staining methods, or imaging modalities 
[19,20]. A process known as style transfer can be utilized 
to address changes in the data distribution by training a 
model that is able to pixel-wise map an image of one 
style to that of another, ideally with minimal loss in se-
mantic content [21]. For instance, a style transfer model 
can be trained to transform an image of one modality, 
such as brightfield, to that of another, such as fluores-
cence; or a model can be trained to transform an image’s 
annotation mask into the image itself. The nucleAIzer 
[22] model utilizes the latter approach as a means of 
achieving greater generalization capabilities, allowing 
the model to more easily be adapted to OOD data. Al-
though developed over three years ago, it is still one of 
the top-performing models at cell segmentation [23]. In 
order to improve usability, a plugin was developed for 
CellProfiler 3 [24] allowing users of the tool to perform 
inference through the use of a GUI. While the plugin 
allows ease of use via the CellProfiler interface, manual 
installation of nucleAIzer and its dependencies are still 
necessary, which is a challenge for noncomputational 
users. A simple web interface is also available, but re-
quires upload of the data to a central server, limiting use 
for large batches of images.

StarDist predates nucleAIzer, however, iterations of it are 
still being introduced [25,26], and general usage remains 
quite high due to a great deal of time being spent on 
documenting its usage, as well as making it available 
across environments and in a variety of graphical tools [12]
such as Fiji/ImageJ, Napari, QuPath [27,28], Icy [29], 
CellProfiler, and KNIME [30]. While a variety of pre-
trained variants are available, it is still limited to specific 
modalities (such as fluorescence or histology stains) and 
even with fine-tuning is oriented to segmenting objects 
that are star-convex — shapes where line segments can be 
drawn from any point along the border to some single 
interior point — that makes it a poor choice for very ir-
regular cell shapes or neurons, since shapes with very 
large bends or curves may not be star-convex.

A primary goal of Cellpose was to develop a generalist 
model by training on a large dataset of manually seg-
mented images from a variety of modalities. Its pre-
processing method, focusing on transforming input data 
to spatial gradients, allows it to generalize to a larger 
variety of shapes. While the architecture was developed 
for generalist purposes, fine-tuning is still often neces-
sary. Cellpose 2.0 [31] was introduced as a package that 
included several pretrained models, a human-in-the-loop 
pipeline for fine-tuning custom models with small da-
tasets, and an improved set of graphical software tools to 
aid in its usage. Omnipose [32] extends Cellpose to work 
better on elongated cells common in bacteria by adding 
distance field prediction similar to StarDist. It is simi-
larly well-documented, packaged, and provides a 
number of interfaces in the form of a library, CLI, and 
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GUI. While it allows for training, it is not available in 
Cellpose 2.0, and thus is not focused on human-in-the- 
loop fine-tuning. Cellpose and Cellpose 2.0 include a 
custom GUI, and extensive documentation; broad usage 
is further supported by their availability via plugins from 
many of the same tools as StarDist.

Mesmer is a DL pipeline trained on the largest public 
tissue dataset of annotated nuclei and whole cells, 
TissueNet [33]. It provides access to a remotely hosted 
instance model through several interfaces, including a 

web portal and plugins for Fiji/ImageJ and QuPath. It 
also provides a Docker container (described below, in 
Making Models Findable, Accessible, Interoperable, and 
Reusable (FAIR)) to run the model in a self-hosted 
manner, with access provided through a Jupyter Note-
book or CLI.

A vision for the state-of-the-art
Many of those working on DL for image segmentation are 
aiming to create a truly generalist model, often referred to 
as a foundation model, capable of greater-than-human 

Figure 1  
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Segmentation and fine-tuning process. (a) The inference dataset contains a variety of samples: some are similar to the original training data the model 
was pretrained on, while others are slightly or very different, leading to low segmentation accuracy. (b) New training data matching the characteristics 
of the full distribution are annotated either manually, through software such as CellProfiler, or a human-in-the-loop model such as Cellpose, and used 
to fine-tune the model. (c) The fine-tuned model produces more accurate segmentations on the inference dataset, which can then be used for 
downstream tasks Figures created with BioRender.com.  
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accuracy, across the wide variety of imaging modalities, in a 
parameter-free manner [34–36]. For biologists, this would 
mean a model that has no need for manual annotation or 
fine-tuning, preferably in a form factor that is easily ac-
cessible, configurable, and invocable. Although there is still 
much progress to be made on this front, a number of ar-
chitectural developments can be highlighted as mile mar-
kers along the path.

Dataset availability
The effectiveness of DL models relies on sufficient simi-
larity between the training data and the user’s own data. 
The specific criteria for what constitutes ‘sufficient simi-
larity’ will naturally differ based on the methods and ar-
chitectural choices employed by the model, but it 
therefore follows that creating foundation models (capable 
of segmenting a wide variety of biological images) will 
require a diverse and comprehensive corpus of training 
data to ensure that the segmentation model can generalize 
effectively. The dataset should encompass a broad spec-
trum of microscope modalities, across a variety of imaging 
conditions, and include many distinct cell types.

The volume of publicly available datasets is ever-in-
creasing, particularly driven from the development of 
specialist models and challenges wherein teams compete 
on segmentation-oriented tasks. TissueNet is the largest 
collection of annotated tissue images, while LIVECell 
[37] is the largest collection of high-quality, manually 
annotated, and expert-validated phase-contrast images. 
The Cell Tracking Challenge (CTC) [38] is an ongoing 
benchmark and reference in cell segmentation and 
tracking algorithms, which in recent years has extended 
the available benchmarks with the Cell Segmentation 
Benchmark (CSB). The Multi-Modality Cell Segmen-
tation Challenge (MMCSC) [36] consolidated a mod-
estly sized labeled dataset with a particular emphasis on 
diversity in modalities.

Challenges stand as an excellent pointer for future pro-
gress in a given area; trends among the top-ranking 
team’s architectures and techniques often form the basis 
of future implementations available to the wider field. 
For instance, data augmentation — where existing 
training data are perturbed and transformed in various 
ways, such as rotations, scaling, intensity adjustments, or 
the infusion of random noise — was highlighted in the 
MMCSC as a particularly important feature in pre-
training top-performing models, aiding them in their 
generalizability. Entirely synthetic datasets are also 
often useful, as demonstrated by their inclusion in a 
subset of the CTC datasets, and in the development of 
frameworks for their generation [39].

Next-generation models
Many architectures are being researched and explored in 
the quest for evermore general and robust models, as 

demonstrated in the MMCSC. The KIT-GE model [40]
is among the top-3 performing models of CTC CSB, and 
was therefore used as one of the baselines in the MMCSC 
alongside Cellpose, Cellpose 2.0, and OmniPose 
[6,31,32]. Analysis of the top-ranking solutions in the 
MMCSC shows that choices in backbone networks are 
particularly important for next-generation models. While 
U-Net inspired architectures form the basis of the widely 
used contemporary models such as StarDist, Cellpose, 
and KIT-GE, the winning solutions in MMCSC employ 
backbones such as SegFormer [41], ConvNeXt [42], and 
ResNeXt [43]. CTC reports that segmentation perfor-
mance increases with techniques such as self-configured 
neural networks (e.g. nnU-Net) [44], neural architecture 
search, and multibranch prediction.

The generalist capabilities provided by Cellpose 2.0 rely 
on fine-tuning, which may cause the model to suffer 
from severe loss of performance on tasks outside of the 
fine-tuning dataset [36]. The top-performing model [45]
of the MMCSC was able to outperform the pretrained 
generalist Cellpose and Omnipose models, as well as a 
Cellpose 2.0 model fine-tuned on the challenge’s 
training data. The testing set included images that were 
distinct from the training data, and sourced from new 
biological experiments, meaning successful models 
needed to show a strong ability to generalize across data 
without additional fine-tuning.

While the winning solution of MMCSC and its asso-
ciated code is available on GitHub, it remains to be seen 
whether it or any of the top-ranking models will be 
available with documentation and interface tools in a 
way comparable to StarDist, Cellpose 2.0, or Omnipose. 
If so, we may be one step closer to a truly general, easy- 
to-set up, easy-to-use, one-click segmentation model, 
with no additional tuning. Short of that, alternative in-
terfaces for model configuration may come to promi-
nence in the form of dialog-driven large language models 
(LLMs) [46,47]. It is also as yet unclear whether future 
enhancements will be driven primarily by transformer 
architectures [34,48], whether advancements in con-
volutional networks [42] will keep pace, as demonstrated 
by the second- and third-place solutions in the MMCSC, 
or whether hybrid approaches will dominate [49,50].

It is also of great research and commercial interest to 
develop foundation models. Meta AI Research recently 
released a family of foundation models for segmentation, 
referred to as the Segment Anything Model [51] (SAM), 
the largest of which was trained on 1.1 billion high-quality 
segmentation labels, across 11 million high-resolution 
images. While the images included in the dataset were 
mostly photographs of natural scenes, it did include a 
small number of microscopy images taken from the 2018 
Data Science Bowl [52]. In short order, Segment Any-
thing for Microscopy [53] was developed, in which SAM 
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was extended to generalize across many imaging mod-
alities by fine-tuning the original model using a variety of 
datasets. Important to SAM’s architecture is its interactive 
segmentation capabilities, where a subset of the user’s 
data is first annotated with a small amount of either point 
annotations or rectangular bounding boxes. Annotations 
of this type are significantly less time-consuming than 
pixel-level mask annotations, and provide SAM with en-
ough guidance to output full segmentation masks on the 
user’s dataset. Segment Anything for Microscopy there-
fore adopts this capability and includes a Napari plugin 
for interactive and automatic segmentation. There is a 
mechanism for automatic segmentation, however, in order 
to get generalist accuracy above that of Cellpose, some 
manual annotations must be made.

Making models Findable, Accessible, Interoperable, and 
Reusable
Alongside progress in model development, there has 
been a greater push toward the dissemination of models 
such that they are FAIR [54–56]. Not only should 
models be available on publicly accessible platforms, but 
the associated code for asset loading, data preprocessing, 
data postprocessing, and model training and model in-
ference, should also be made available in a well-pack-
aged and documented form. Container platforms such as 
Docker [57] can alleviate many installation and setup 
complexities, providing an isolated and controlled en-
vironment in which software is installed, and a pre-
configured installation process for the target software. 
This ‘containerization’ of software and its dependencies 
dramatically decreases the barriers for reuse. In addition, 
making models readily accessible, configurable, and 
tunable in a low- or no-code manner via interactive code 
notebooks or GUI encourages broader adoption of 
SOTA models.

The CTC proposed guidelines for algorithm developers 
to make their workflows both available and re-
producible, while currently optional, they will be man-
datory in the future. At minimum, the source code 
should be available on a public repository, and contain 
clear instructions for installing dependencies, initializing 
the model, loading weights, and training with new data. 
They also pushed for source code to be available via 
notebooks such as Jupyter and Google Colab. In the 
same vein, the MMCSC required all participants to 
place their solutions in Docker containers; the winning 
teams have made these available on public image re-
gistries and also made their algorithms publicly available 
on GitHub alongside processing source code. In addi-
tion, the top-three solutions were encouraged to develop 
Napari [11] plugins.

A missing component in full adherence to FAIR prin-
ciples is the interoperability of models. While research 
and development in model architectures are healthy and 

vital, there is no agreed-upon specification on the inputs 
and outputs of models. The difference in the model 
outputs between, for example, StarDist and Cellpose, is 
stark, and the postprocessing that is needed is corre-
spondingly distinct. While the outputs are necessary by- 
products of the model architectures, the lack of a stan-
dard makes interoperability with existing tools difficult 
as custom code needs to be written to mirror the post-
processing steps.

Making models efficient
Models vary widely in terms of algorithmic efficiency, 
which will affect their adoption, especially in low-re-
source settings. While some challenges such as the CTC 
emphasize segmentation accuracy alone, others such as 
MMCSC evaluate efficiency as an explicit criterion, and 
the top-performing models had good trade-offs between 
accuracy and efficiency in runtime and memory usage. 
There are additional efforts in bringing model optimi-
zation tools to the bioimage community [58,59], as well 
as reducing runtime of bioimage analysis pipelines in 
general [59,60]. Efficient models, and model optimiza-
tion tools will become increasingly important for training 
and inference tasks in local desktop and web-based tools 
[2,61], especially in contexts where moving data to the 
cloud is not viable or allowed.

Improving tool access and availability
Though local-first software and algorithms remain im-
portant to grow and maintain, cloud-oriented tools and 
resources for bioimage analysis are becoming more pre-
valent and easier to use as demand for large-scale cloud- 
based workflows increases. In addition to providing large 
storage capacity and high-performance hardware, cloud- 
based tools increase the availability and accessibility of 
models, and often move the technical complexity away 
from the end user.

Notebooks allow code, explanatory text, and interactive 
elements to live together in a single package, providing 
alternatives or complements to libraries, documentation, 
and GUI interfaces. ZeroCostDL4Mic [62] provides 
rigorously documented and annotated code notebooks 
with prewritten code that can be customized for specific 
workflows through the exposed settings. A major benefit 
to these notebooks is that they can be deployed either 
locally or on the Google Colab platform, which eases 
hardware requirements and allows running moderately 
sized workloads for free. Behind the scenes, a container 
is initialized in the cloud and the installation occurs via 
preconfigured installation scripts contained within the 
notebooks.

Beyond notebooks, other tools provide a larger degree of 
customization and control, albeit at the expense of ad-
ditional complexity. The BioContainers project is an 
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open-source and community-driven framework that 
provides cloud resources for defining, building, and 
distributing containers for biological tools [63]. The 
BioContainers Registry was developed with FAIR 
principles in mind, and provides both web and RESTful 
API interfaces to search for bioinformatics tools [64]. 
BIAFLOWS [65] is a community-driven, open-source 
web platform that allows deployment of and access to a 
wide variety of reproducible image analysis workflows. 
The platform provides a framework to import data, en-
capsulate workflows in container images, batch-process 
data, visualize data, and assess performance using widely 
accepted benchmark metrics on a large collection of 
public datasets. BioImageIT [66] is a more recent, 
plugin-oriented, workflow tool for data management and 
analysis. It has a unique emphasis on reconciling existing 
data management and data analysis tools, and although 
run locally has the ability to tap into remote data stores 
and job runners.

The BioImage Model Zoo [67] provides a community- 
driven repository for pretrained DL models and pro-
motes a standard model description format for describing 
metadata. Community partners can work with the Bio-
Image Model Zoo to support execution of the models 
and include many common bioimage tools. In addition, 
model execution can be performed via the BioEngine 
application framework, on top of the ImJoy plugin fra-
mework [68], allowing inference both on the BioImage 
Model Zoo web application and other web applications 
using the client ImJoy software. Behind the scenes, 
multiple containers are being run and managed with a 
container orchestration tool called Kubernetes.

For moderately more technical users, who are comfortable 
with using tools for deploying their own container or-
chestration workloads, there are some additional options. 
DeepCell Kiosk [69] is a cloud-native tool for dynamic 
scaling of image analysis workflows, utilizing Kubernetes 
orchestration similarly to the BioEngine inference engine. 
The tool is managed from several interfaces, including a 
web portal and Fiji plugin. Distributed-Something [70]
takes a script-based approach to scale and distribute ar-
bitrary containerized jobs on AWS, automatically config-
uring the AWS infrastructure for container orchestration, 
monitoring, and data handling. It runs the work in a cost- 
effective manner, and cleans up the infrastructure when 
the work has been completed.

Conclusion
The landscape of segmentation algorithms, enabling 
tools, workflow management systems, repositories, 
benchmarks, and challenges, is constantly shifting. This 
very active landscape makes it all the more important to 
create community standards for reporting on methods 
and robust segmentation quality metrics, on which there 

has been recent guidance [35,71–73]. While there is still 
much work to do, the past two years have seen essential 
strides made in democratizing the use of advanced seg-
mentation methods through user-friendly interfaces and 
improved documentation. Integrating tools and scaling 
up reproducible workflows fosters a more collaborative 
and robust ecosystem; these continuing trends will em-
power researchers from diverse backgrounds to collec-
tively explore the intricate universe of single-cell 
biology, ultimately accelerating the pace of discovery 
and innovation in this vital field of study.
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