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Abstract
CellProfiler is a widely used software for creating reproducible, reusable image
analysis workflows without needing to code. In addition to the >90 modules
that make up the main CellProfiler program, CellProfiler has a plugins sys-
tem that allows for the creation of new modules which integrate with other
Python tools or tools that are packaged in software containers. The CellProfiler-
plugins repository contains a number of these CellProfiler modules, especially
modules that are experimental and/or dependency-heavy. Here, we present an
upgraded CellProfiler-plugins repository, an example of accessing containerised
tools, improved documentation and added citation/reference tools to facilitate
the use and contribution of the community.
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1 INTRODUCTION

Bioimage analysis has become increasingly popular over
the last 30 years, with approximately ten times as many
citations per year as 20 years ago and three times as many
as a decade ago (Figure 1). The number of open-source
image analysis tools has both driven and been driven by
this increase – since the Scientific Community Image
Forum (forum.image.sc)1 was formed in 2018, the number
of participating software tools has grown from 2 to 56. A
recent overview of open-source image analysis tools or
platforms identified 82 tools, platforms or languages,2 and

the BioImage Informatics Index (BIII)3 lists 1388 available
tools, components and workflows.
While too many tools is certainly preferable to too few,

this increase in software tools and methods means users
must wade through an increasingly large tool ecosystem to
find the best tool for their needs, which can be especially
overwhelming for non-expert users. Deep learning-based
tools, also booming in popularity, often have particularly
complicated installations. A recent analysis of posts at
forum.image.sc implies that possibly as many as 1 in 10
threads is started due to installation issues and as many
as one in five touch on installation at some point.4
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Since image analyses rarely are composed of single
steps,5 in addition to tools that specialise in performing
a single task well, the bioimage analysis space consists of
a number of generalist ‘no-code’ (or ‘code-optional’) soft-
ware workflow platforms that collect other tools and/or
help create workflows, including Fiji,6 Icy,7 KNIME8
and CellProfiler.9,10 Since their role is at least in part to
bring groups of tools together, such workflow platforms
typically accept outside contributions or ‘plugins’ created
by other groups. It is worth noting that in a recent survey
about image analysis in the life and physical sciences, tool
users frequently mentioned both ‘platforms’ and ‘plugins’
when asked about what tool developers could do to make
user experiences easier.11
Of the four tools listed above, Fiji, Icy and KNIME

are all implemented in Java; CellProfiler is the sole tool
written in Python. Though Java has long been dominant
in bioimage analysis due to tools like ImageJ,12,13 Python-
based tools are becoming increasingly popular, partially
though not exclusively due to Python’s dominance in deep
learning. The recent creation of the PyImageJ14 library
helps integrate Java and Python tools in code-friendly
spaces like Jupyter notebooks15 and napari16; neverthe-
less, a Python-based image analysis workflow tool is an
important part of the bioimage analysis ecosystem. As
such, while CellProfiler has for a number of years allowed
users to implement their own custom plugins,9,10 we
herein report on efforts to make CellProfiler plugins easier
to find, install, develop and use.

2 RESULTS

2.1 What are CellProfiler plugins?

CellProfiler enables the flexible creation of image anal-
ysis workflows by providing almost 100 modules that
each performs an image or object processing function
that are arranged and configured by a researcher into a
pipeline specific to their analysis task. Plugins are mod-
ules that extend CellProfiler’s capabilities but are not
installed in CellProfiler by default. They allow CellProfiler
to be customised and expanded beyond the capabili-
ties of a single development team and provide a plat-
form for other developers to share their work with the
community, making CellProfiler more extensible and col-
laborative. The CellProfiler-plugins repository stores and
shares these CellProfiler modules. Version 1.0.0 of the
repository contains 15 plugins (Table 1). Decisions about
incorporating plugins into the main program are fre-
quently revisited by the CellProfiler development team in
consultation with plugin creators. The two primary, non-
mutually exclusive reasons a module might be distributed

Practitioner points

1. CellProfiler plugins expand the kinds of repro-
ducible analyses that can be performed inside
CellProfiler.

2. Plugins allow for integration of niche, exper-
imental or cross-language tools into a central
image processing workflow.

3. Containerisation is particularly useful in allow-
ing access to toolswritten in different languages
and/or with conflicting dependencies.

as a plugin are narrow audience suitability and library
dependencies.

2.1.1 Modules not suitable for a majority of
CellProfiler users

The existing CellProfiler application contains more than
90 individual modules, and user feedback has consistently
shown that the program’s complexity is a hurdle to adop-
tion. By consciously including only new modules with a
high threshold for reuse, we slow the growth of CellPro-
filer’s complexity; thus, modules such as CallBarcodes,
which decodes one-hot-exponentially multiplexed bar-
codes such as in in situ sequencing17 and seqFISH,18 are
typically designated as plugins because, in our experience,
only a small fraction of CellProfiler users are performing
this type of experiment. This class also includes modules
we feel have a high potential for accidental misuse:
histogram equalisation and normalisation (performed in
HistogramEqualization and HistogramMatching mod-
ules) are both image manipulations that are undeniably
useful in certain contexts but can introduce hard-to-trace
effects if used before image quantification. Thus, these
modules are only available to users who seek them out.

2.1.2 Modules that require external
dependencies

The existing CellProfiler application contains a number of
popular scientific Python libraries like NumPy,19 SciPy,20
scikit-image21 and scikit-learn.22 It does not, however,
contain dataframe handling tools such as pandas23
nor libraries typically used for deep learning such as
TensorFlow24 or PyTorch25 due to added complexity for
users and to keep the CellProfiler application at a reason-
able file size. If the libraries needed to support a particular
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WEISBART et al. 3

F IGURE 1 PubMed search results for ‘bioimaging’ (A) and ‘bioimage analysis’ (B) from 1992–2022, plotted as absolute citation counts
(blue) and citation counts normalised to all PubMed citations (orange). Increase in both terms is substantial over this time window.

module are not currently contained in CellProfiler, the
module must be used as a plugin, either by using specially
installed versions of CellProfiler or by using software
containers (see below). If the module seems to be suitable
for the majority of CellProfiler users, the dependencies
may be added in future versions of CellProfiler, subject
to considerations such as library size, compatibility with
existing libraries and licensing constraints.26

2.2 Using CellProfiler plugins

Plugins can be used by simply downloading the entire
plugins repository (or any individual plugin) from the
CellProfiler-plugins GitHub repository at https://github.
com/CellProfiler/CellProfiler-plugins. In the CellProfiler
‘preferences’ menu, the user sets the CellProfiler-plugins
directory to the folder containing the plugin(s) they wish
to use. When CellProfiler is next opened, it will attempt to
load all plugins found in that folder; note that it will not
recursively search subfolders. Successfully loaded plugins
will be available in the ‘Add Modules’ menu alongside
CellProfiler native modules. Plugins relying only on
CellProfiler-provided libraries (see Table 1) can be loaded
in CellProfiler whether the CellProfiler application was
downloaded from the CellProfiler.org website (sometimes
referred to as installing ‘built’) or whether CellProfiler was
installed in Python on the user’s computer (sometimes
referred to as ‘from source’).
When the built CellProfiler application does not con-

tain all of a plugin’s dependencies, additional installation
of these dependencies or an alternative approach that cir-
cumvents local installation requirements must be used in

order for the plugins to work; three methods are described
in the paragraphs following. Some of the most impactful
plugins add new dependencies: bringing new functional-
ity to CellProfiler and bridging gaps in the core library
(e.g. modules with Deep Learning functionality such as
RunCellpose or RunStarDist), even crossing boundaries to
other languages and tools (e.g. RunImageJScript). As seen
in Figure 2, Cellpose27 is a highly requested plugin for Cell-
Profiler, due to its easy-to-tune segmentation networks.

2.2.1 Installation via Python

CellProfiler can be installed in a system’s local Python
installation by cloning from GitHub or by directly
installing from the Python Package Index (PyPI) in Python
versions 3.8 or 3.9. Users may find dependency manage-
ment easiest if they use Python virtual environment tools
such as pyenv,31 or Anaconda32 and related tools such
as mamba.33 Users can then add additional libraries (as
laid out by the plugin author) via pip or conda per their
package manager’s instructions, though problems may
arise when plugins have conflicting dependencies (e.g.
Plugin 1 requires a library to be at version 1.5, but Plugin
2 only works with that library at version 2.0). Solving such
dependency conflicts typically requires manual review
of the dependencies; help is available in the plugins
documentation as well as on the image.sc forum, and we
provide a setup file in the CellProfiler-plugins repository
to help ease pip installation of CellProfiler and each
plugin’s dependencies. This is the method that we have
historically recommended, though it can be admittedly
challenging for non-developer users.
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4 WEISBART et al.

TABLE 1 CellProfiler Plugins in plugins repository version 1.0.0.

Plugins with no extra dependencies
Module name Module purpose
CalculateMoments CalculateMoments extracts moment statistics from a given distribution of pixel values.
CallBarcodes CallBarcodes is used for assigning a barcode to an object based on the channel with the strongest intensity

for a given number of cycles. It is used for optical sequencing by synthesis (SBS).
CompensateColors CompensateColors determines how much signal in any given channel is because of bleed-through from

another channel and removes the bleed-through. It can be performed across an image or masked to
objects and provides a number of preprocessing and rescaling options to allow for troubleshooting if
input image intensities are not well matched.

DistanceTransform DistanceTransform computes the distance transform of a binary image. The distance of each foreground
pixel is computed to the nearest background pixel and the resulting image is then scaled so that the
largest distance is 1.

EnhancedMeasureTexture EnhancedMeasureTexture measures the degree and nature of textures within an image or objects in a more
comprehensive/tuneable manner than the MeasureTexture module native to CellProfiler.

HistogramEqualization HistogramEqualization increases the global contrast of a low-contrast image or volume. Histogram
equalisation redistributes intensities to utilise the full range of intensities, such that the most common
frequencies are more distinct. This module can perform either global or local histogram equalisation.

HistogramMatching HistogramMatching manipulates the pixel intensity values of an input image and matches them to the
histogram of a reference image. It can be used as a way to normalise intensities across different 2D or 3D
images or different frames of the same 3D image. It allows you to choose which frame to use as the
reference.

PixelShuffle PixelShuffle takes the intensity of each pixel in an image and randomly shuffles its position.
Predict Predict allows you to use an ilastik pixel classifier to generate a probability image. CellProfiler supports two

types of ilastik projects: Pixel Classification and Autocontext (2 stage).
VarianceTransform VarianceTransform allows you to calculate the variance of an image, using a determined window size. It

also has the option to find the optimal window size from a predetermined range to obtain the maximum
variance of an image.

Plugins with extra dependencies
RunCellpose RunCellpose allows you to run Cellpose27 within CellProfiler. Cellpose is a generalist machine-learning

algorithm for cellular segmentation and is a great starting point for segmenting non-round cells.
RunDeepProfiler RunDeepProfiler allows you to create DeepProfiler28 features within CellProfiler. DeepProfiler is a

comprehensive suite of tools designed to leverage deep learning techniques for the analysis of imaging
data in high-throughput biological experiments.

RunImageJScript RunImageJScript allows you to run any supported ImageJ script directly within CellProfiler using
PyImageJ.14 It is significantly more performant than RunImageJMacro and is also less likely to leave
behind temporary files.

RunOmnipose RunOmnipose allows you to run Omnipose29 within CellProfiler. Omnipose is a general image
segmentation tool that builds on Cellpose.

RunStardist RunStarDist allows you to run StarDist30 within CellProfiler. StarDist is a machine-learning algorithm for
object detection with star-convex shapes making it best suited for nuclei or round-ish cells. You can use
pre-trained StarDist models or your custom model with this plugin.

2.2.2 Installation of Python dependencies
into a built application

A developer who wishes to add support for a particular
plugin to CellProfiler could add their dependencies
directly to the built CellProfiler application and then dis-
tribute themodified application, simplifying plugin use for
non-developer users. Further explanation is given in the
plugins documentation at https://plugins.cellprofiler.org.
Since the extra dependencies will be operating system
dependent, and since the source of such a modified

version should be extremely well trusted before a user
attempts to use it, this approach does not scale widely, but
could be useful in the context of an individual laboratory
or core facility.

2.2.3 Access of external dependencies via
containers

Since recent analyses suggest users who spend more of
their time on ‘imaging’ than ‘image analysis’ self-report
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WEISBART et al. 5

F IGURE 2 Wordcloud of terms used in ∼200 forum.image.sc posts tagged with ‘cellprofiler’ from February to May of 2023. ‘plugin’ (top
right), ‘install’ (bottom center), ‘StarDist’ (top left) and ‘cellpose’ (center left) are all visible.

lower computational comfort than those who spend more
time on image analysis,11 and installation issues can be a
particular pain point in working with bioimage analysis
software,4 solutions that require Python installation may
exclude a sizable fraction of the users of bioimage analysis
tools, especially beginning users. Software containers
such as Docker34 and Singularity35 are increasingly used
to distribute open-source software tools; the Biocontainers
repository36 contains more than 1000 software tools pack-
aged into containers. Containers simplify dependency
management (since packages are installed once and only
once during creation of the container) and especially
version conflicts between packages (since each tool in a
workflow can live in a separate container or application).
A built copy of CellProfiler that can access containers can
therefore, in theory, access any other software that has
been containerised. With this in mind, we have recently
converted the RunCellpose module to optionally use a
Cellpose Docker container so that Python and Cellpose
installation are no longer required, which makes our
RunCellpose plugin accessible to even the most compu-
tationally novice users as the only additional installation
it requires is the one-click download of Docker. We are
currently working to bring the optional use of Docker
to other plugins which are compatible with CellProfiler
4 (the current version), and to modules packaged with
CellProfiler 5.

2.3 Creating new CellProfiler plugins

For developers wishing to create new CellProfiler plugins,
a number of resources are available. Module templates
are available in the main CellProfiler repository at
https://github.com/CellProfiler/CellProfiler/tree/master/
cellprofiler/modules/plugins; the plugin templates walk
developers through the various steps required to create
several classes of CellProfiler modules (such as ‘image pro-
cessing’ and ‘measurement’). Additional documentation
about plugins and the plugin repository submission pro-
cess is available at https://plugins.cellprofiler.org. Finally,
a video in the NEUBIAS academy YouTube series37 walks
developers through the process of designing and creating
a new plugin, including incorporating module settings,
design decisions, and how to incorporate the actual run
code into the module, which is typically the simplest part
of writing a new plugin.
While the above approaches are suitable for addition of

everything from simple library calls to large external tools
to CellProfiler, developers of the latter may reasonably be
concerned that by distributing their tool inside a CellPro-
filer plugin, the end user may not fully appreciate that it
is an independent piece of software and forget to credit
and/or cite it. To alleviate these concerns, CellProfiler has
added a ‘doi’ property tomodules, and addedDigital Object
Identifier (DOI) citations to all existing plugins relying on
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6 WEISBART et al.

external libraries. TheseDOIs feed into a citation generator
tool in CellProfiler that allows users to easily export a list
of citations required by their pipeline. This functionality is
currently available in CellProfiler’s source code andwill be
widely available in the upcoming CellProfiler 5 release.

3 DISCUSSION

In the 17 years since the original CellProfiler paper38
was published, CellProfiler has been cited or mentioned
in more than 15,000 academic papers. After a code-free
pipeline creation process that the user can tune to their
own data, it is designed to multiprocess small-to-medium
datasets locally on the user’s computer or, with a few
clicks, it can export files allowing a locally tuned pipeline
to be used on clusters38 or the cloud.9 These abilities
have earned CellProfiler a reputation as a friendly and
easy-to-use platform.39 In contrast to CellProfiler’s early
days, however, we now live in a scientific world where new
bioimage analysis libraries and tools become available
weekly or even daily. We argue that having central work-
flow platforms that make it easy for developers to share
their work and users to easily try it facilitates adoption
and knowledge sharing, accelerating the field as a whole.
CellProfiler is certainly not the only such workflow plat-

form – Fiji notably contains more than 10,000 externally
contributed plugins, and other tools exist in this space,
some of which require minimal or no code (Icy, KNIME)
and some of which require code for many or most applica-
tions (Jupyter, napari). Within this ecosystem, CellProfiler
specialises in shareable, code-free, linear image analysis
workflows; users should choose the platform that best fits
their needs. Efforts tomakemultiple deep learningmodels
available, such as DeepImageJ40 and the Bioimage Model
Zoo,41 while not workflow tools, also help users find image
analysis solutions, and to try a number of different deep
learning tools side by side. However, CellProfiler’s module
templates and ability to use containerised tools help ease
the lift for developers in creating easily disseminated
plugins, and contribution to a centralised repository helps
both developers and users with discovery of new tools.
These changes, along with improved ease of citation, we
believe make CellProfiler’s plugin system a valuable part
of the image analysis workflow ecosystem.

4 CONCLUSION

Bioimage analysis is now a firmly established part of
the bioimaging universe; qualitative conclusions drawn
from human observations are slowly but steadily being
replaced by quantitative measurements of particular

image or object properties. This replacement process can
be accelerated by giving software users friendly, interactive
workflow tools that give them beginning-to-end solutions
for their image analysis tasks. Plugins play an important
role in this process as they allow users to perform specific
but necessary steps to customise and extend their analy-
ses. Plugin creation allows for rapid and straightforward
integration of new tools, components and approaches,
while allowing users continuity using workflow tools they
are already familiar with. We hope the improvement of
the CellProfiler-plugins repository encourages developers
to contribute plugins, and encourages users to integrate
these plugins into their CellProfiler pipelines. These
approaches will lead to faster workflow creation and more
reproducible workflows for all those using these tools to
solve their image analysis problems.

5 MATERIALS ANDMETHODS

Current modules in the CellProfiler-plugins repository are
written for Python42 3.8 and designed to be used with Cell-
Profiler 410 – the repository also contains unmaintained
plugins designed for CellProfiler 243 and CellProfiler
3.9 Dependencies for each plugin are indicated in the
repository’s setup.py file.
Figures in this paper were generated in Jupyter

notebook15 6.4.12 running Python 3.8.16 using the
matplotlib44 3.7.1, pandas23 1.5.2, seaborn45 0.12.2 and
wordcloud46 1.9.2 libraries.
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