
Received: 2 June 2023 Revised: 10 August 2023 Accepted: 5 September 2023

DOI: 10.1111/jmi.13223

TH EMED IS SUE ART ICLE

CellProfiler plugins – An easy image analysis platform
integration for containers and Python tools

ErinWeisbart1 Callum Tromans-Coia1 Barbara Diaz-Rohrer1

David R. Stirling1 Fernanda Garcia-Fossa1,2 Rebecca A. Senft1

Mark C. Hiner3 Marcelo B. de Jesus2 KevinW. Eliceiri3

Beth A. Cimini1

1Imaging Platform, Broad Institute of MIT
and Harvard, Cambridge, Massachusetts,
USA
2Department of Biochemistry and Tissue
Biology, Institute of Biology, University of
Campinas, Campinas, São Paulo, Brazil
3Center for Quantitative Cell Imaging,
University of Wisconsin-Madison,
Madison, Wisconsin, USA

Correspondence
Dr. Beth Cimini, Imaging Platform, Broad
Institute, 415 Main St, Cambridge, MA
02142, USA.
Email: bcimini@broadinstitute.org

Funding information
National Institute of General Medical
Sciences, Grant/Award Number: P41
GM135019; Chan Zuckerberg Initiative,
Grant/Award Number: 2020–225720; São
Paulo Research Foundation, Grant/Award
Numbers: #2022/01483-4, #2019/24033-1,
#2020/01218-3

Abstract
CellProfiler is a widely used software for creating reproducible, reusable image
analysis workflows without needing to code. In addition to the >90 modules
that make up the main CellProfiler program, CellProfiler has a plugins sys-
tem that allows for the creation of new modules which integrate with other
Python tools or tools that are packaged in software containers. The CellProfiler-
plugins repository contains a number of these CellProfiler modules, especially
modules that are experimental and/or dependency-heavy. Here, we present an
upgraded CellProfiler-plugins repository, an example of accessing containerised
tools, improved documentation and added citation/reference tools to facilitate
the use and contribution of the community.

KEYWORDS
CellProfiler, image analysis, plugin, Python, software, software container, workflow

1 INTRODUCTION

Bioimage analysis has become increasingly popular over
the last 30 years, with approximately ten times as many
citations per year as 20 years ago and three times as many
as a decade ago (Figure 1). The number of open-source
image analysis tools has both driven and been driven by
this increase – since the Scientific Community Image
Forum (forum.image.sc)1 was formed in 2018, the number
of participating software tools has grown from 2 to 56. A
recent overview of open-source image analysis tools or
platforms identified 82 tools, platforms or languages,2 and

the BioImage Informatics Index (BIII)3 lists 1388 available
tools, components and workflows.
While too many tools is certainly preferable to too few,

this increase in software tools and methods means users
must wade through an increasingly large tool ecosystem to
find the best tool for their needs, which can be especially
overwhelming for non-expert users. Deep learning-based
tools, also booming in popularity, often have particularly
complicated installations. A recent analysis of posts at
forum.image.sc implies that possibly as many as 1 in 10
threads is started due to installation issues and as many
as one in five touch on installation at some point.4

J. Microsc. 2023;1–8. © 2023 Royal Microscopical Society. 1wileyonlinelibrary.com/journal/jmi

https://orcid.org/0000-0002-6437-2458
https://orcid.org/0000-0002-5518-8915
https://orcid.org/0000-0002-4748-7077
https://orcid.org/0000-0001-6802-4103
https://orcid.org/0000-0003-2308-0149
https://orcid.org/0000-0003-0081-4170
https://orcid.org/0000-0001-9404-7579
https://orcid.org/0000-0003-0812-1491
https://orcid.org/0000-0001-8678-670X
https://orcid.org/0000-0001-9640-9318
mailto:bcimini@broadinstitute.org
https://wileyonlinelibrary.com/journal/jmi
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjmi.13223&domain=pdf&date_stamp=2023-09-23


2 WEISBART et al.

Since image analyses rarely are composed of single
steps,5 in addition to tools that specialise in performing
a single task well, the bioimage analysis space consists of
a number of generalist ‘no-code’ (or ‘code-optional’) soft-
ware workflow platforms that collect other tools and/or
help create workflows, including Fiji,6 Icy,7 KNIME8
and CellProfiler.9,10 Since their role is at least in part to
bring groups of tools together, such workflow platforms
typically accept outside contributions or ‘plugins’ created
by other groups. It is worth noting that in a recent survey
about image analysis in the life and physical sciences, tool
users frequently mentioned both ‘platforms’ and ‘plugins’
when asked about what tool developers could do to make
user experiences easier.11
Of the four tools listed above, Fiji, Icy and KNIME

are all implemented in Java; CellProfiler is the sole tool
written in Python. Though Java has long been dominant
in bioimage analysis due to tools like ImageJ,12,13 Python-
based tools are becoming increasingly popular, partially
though not exclusively due to Python’s dominance in deep
learning. The recent creation of the PyImageJ14 library
helps integrate Java and Python tools in code-friendly
spaces like Jupyter notebooks15 and napari16; neverthe-
less, a Python-based image analysis workflow tool is an
important part of the bioimage analysis ecosystem. As
such, while CellProfiler has for a number of years allowed
users to implement their own custom plugins,9,10 we
herein report on efforts to make CellProfiler plugins easier
to find, install, develop and use.

2 RESULTS

2.1 What are CellProfiler plugins?

CellProfiler enables the flexible creation of image anal-
ysis workflows by providing almost 100 modules that
each performs an image or object processing function
that are arranged and configured by a researcher into a
pipeline specific to their analysis task. Plugins are mod-
ules that extend CellProfiler’s capabilities but are not
installed in CellProfiler by default. They allow CellProfiler
to be customised and expanded beyond the capabili-
ties of a single development team and provide a plat-
form for other developers to share their work with the
community, making CellProfiler more extensible and col-
laborative. The CellProfiler-plugins repository stores and
shares these CellProfiler modules. Version 1.0.0 of the
repository contains 15 plugins (Table 1). Decisions about
incorporating plugins into the main program are fre-
quently revisited by the CellProfiler development team in
consultation with plugin creators. The two primary, non-
mutually exclusive reasons a module might be distributed

Practitioner points

1. CellProfiler plugins expand the kinds of repro-
ducible analyses that can be performed inside
CellProfiler.

2. Plugins allow for integration of niche, exper-
imental or cross-language tools into a central
image processing workflow.

3. Containerisation is particularly useful in allow-
ing access to toolswritten in different languages
and/or with conflicting dependencies.

as a plugin are narrow audience suitability and library
dependencies.

2.1.1 Modules not suitable for a majority of
CellProfiler users

The existing CellProfiler application contains more than
90 individual modules, and user feedback has consistently
shown that the program’s complexity is a hurdle to adop-
tion. By consciously including only new modules with a
high threshold for reuse, we slow the growth of CellPro-
filer’s complexity; thus, modules such as CallBarcodes,
which decodes one-hot-exponentially multiplexed bar-
codes such as in in situ sequencing17 and seqFISH,18 are
typically designated as plugins because, in our experience,
only a small fraction of CellProfiler users are performing
this type of experiment. This class also includes modules
we feel have a high potential for accidental misuse:
histogram equalisation and normalisation (performed in
HistogramEqualization and HistogramMatching mod-
ules) are both image manipulations that are undeniably
useful in certain contexts but can introduce hard-to-trace
effects if used before image quantification. Thus, these
modules are only available to users who seek them out.

2.1.2 Modules that require external
dependencies

The existing CellProfiler application contains a number of
popular scientific Python libraries like NumPy,19 SciPy,20
scikit-image21 and scikit-learn.22 It does not, however,
contain dataframe handling tools such as pandas23
nor libraries typically used for deep learning such as
TensorFlow24 or PyTorch25 due to added complexity for
users and to keep the CellProfiler application at a reason-
able file size. If the libraries needed to support a particular

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WEISBART et al. 3

F IGURE 1 PubMed search results for ‘bioimaging’ (A) and ‘bioimage analysis’ (B) from 1992–2022, plotted as absolute citation counts
(blue) and citation counts normalised to all PubMed citations (orange). Increase in both terms is substantial over this time window.

module are not currently contained in CellProfiler, the
module must be used as a plugin, either by using specially
installed versions of CellProfiler or by using software
containers (see below). If the module seems to be suitable
for the majority of CellProfiler users, the dependencies
may be added in future versions of CellProfiler, subject
to considerations such as library size, compatibility with
existing libraries and licensing constraints.26

2.2 Using CellProfiler plugins

Plugins can be used by simply downloading the entire
plugins repository (or any individual plugin) from the
CellProfiler-plugins GitHub repository at https://github.
com/CellProfiler/CellProfiler-plugins. In the CellProfiler
‘preferences’ menu, the user sets the CellProfiler-plugins
directory to the folder containing the plugin(s) they wish
to use. When CellProfiler is next opened, it will attempt to
load all plugins found in that folder; note that it will not
recursively search subfolders. Successfully loaded plugins
will be available in the ‘Add Modules’ menu alongside
CellProfiler native modules. Plugins relying only on
CellProfiler-provided libraries (see Table 1) can be loaded
in CellProfiler whether the CellProfiler application was
downloaded from the CellProfiler.org website (sometimes
referred to as installing ‘built’) or whether CellProfiler was
installed in Python on the user’s computer (sometimes
referred to as ‘from source’).
When the built CellProfiler application does not con-

tain all of a plugin’s dependencies, additional installation
of these dependencies or an alternative approach that cir-
cumvents local installation requirements must be used in

order for the plugins to work; three methods are described
in the paragraphs following. Some of the most impactful
plugins add new dependencies: bringing new functional-
ity to CellProfiler and bridging gaps in the core library
(e.g. modules with Deep Learning functionality such as
RunCellpose or RunStarDist), even crossing boundaries to
other languages and tools (e.g. RunImageJScript). As seen
in Figure 2, Cellpose27 is a highly requested plugin for Cell-
Profiler, due to its easy-to-tune segmentation networks.

2.2.1 Installation via Python

CellProfiler can be installed in a system’s local Python
installation by cloning from GitHub or by directly
installing from the Python Package Index (PyPI) in Python
versions 3.8 or 3.9. Users may find dependency manage-
ment easiest if they use Python virtual environment tools
such as pyenv,31 or Anaconda32 and related tools such
as mamba.33 Users can then add additional libraries (as
laid out by the plugin author) via pip or conda per their
package manager’s instructions, though problems may
arise when plugins have conflicting dependencies (e.g.
Plugin 1 requires a library to be at version 1.5, but Plugin
2 only works with that library at version 2.0). Solving such
dependency conflicts typically requires manual review
of the dependencies; help is available in the plugins
documentation as well as on the image.sc forum, and we
provide a setup file in the CellProfiler-plugins repository
to help ease pip installation of CellProfiler and each
plugin’s dependencies. This is the method that we have
historically recommended, though it can be admittedly
challenging for non-developer users.

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/CellProfiler/CellProfiler-plugins
https://github.com/CellProfiler/CellProfiler-plugins


4 WEISBART et al.

TABLE 1 CellProfiler Plugins in plugins repository version 1.0.0.

Plugins with no extra dependencies
Module name Module purpose
CalculateMoments CalculateMoments extracts moment statistics from a given distribution of pixel values.
CallBarcodes CallBarcodes is used for assigning a barcode to an object based on the channel with the strongest intensity

for a given number of cycles. It is used for optical sequencing by synthesis (SBS).
CompensateColors CompensateColors determines how much signal in any given channel is because of bleed-through from

another channel and removes the bleed-through. It can be performed across an image or masked to
objects and provides a number of preprocessing and rescaling options to allow for troubleshooting if
input image intensities are not well matched.

DistanceTransform DistanceTransform computes the distance transform of a binary image. The distance of each foreground
pixel is computed to the nearest background pixel and the resulting image is then scaled so that the
largest distance is 1.

EnhancedMeasureTexture EnhancedMeasureTexture measures the degree and nature of textures within an image or objects in a more
comprehensive/tuneable manner than the MeasureTexture module native to CellProfiler.

HistogramEqualization HistogramEqualization increases the global contrast of a low-contrast image or volume. Histogram
equalisation redistributes intensities to utilise the full range of intensities, such that the most common
frequencies are more distinct. This module can perform either global or local histogram equalisation.

HistogramMatching HistogramMatching manipulates the pixel intensity values of an input image and matches them to the
histogram of a reference image. It can be used as a way to normalise intensities across different 2D or 3D
images or different frames of the same 3D image. It allows you to choose which frame to use as the
reference.

PixelShuffle PixelShuffle takes the intensity of each pixel in an image and randomly shuffles its position.
Predict Predict allows you to use an ilastik pixel classifier to generate a probability image. CellProfiler supports two

types of ilastik projects: Pixel Classification and Autocontext (2 stage).
VarianceTransform VarianceTransform allows you to calculate the variance of an image, using a determined window size. It

also has the option to find the optimal window size from a predetermined range to obtain the maximum
variance of an image.

Plugins with extra dependencies
RunCellpose RunCellpose allows you to run Cellpose27 within CellProfiler. Cellpose is a generalist machine-learning

algorithm for cellular segmentation and is a great starting point for segmenting non-round cells.
RunDeepProfiler RunDeepProfiler allows you to create DeepProfiler28 features within CellProfiler. DeepProfiler is a

comprehensive suite of tools designed to leverage deep learning techniques for the analysis of imaging
data in high-throughput biological experiments.

RunImageJScript RunImageJScript allows you to run any supported ImageJ script directly within CellProfiler using
PyImageJ.14 It is significantly more performant than RunImageJMacro and is also less likely to leave
behind temporary files.

RunOmnipose RunOmnipose allows you to run Omnipose29 within CellProfiler. Omnipose is a general image
segmentation tool that builds on Cellpose.

RunStardist RunStarDist allows you to run StarDist30 within CellProfiler. StarDist is a machine-learning algorithm for
object detection with star-convex shapes making it best suited for nuclei or round-ish cells. You can use
pre-trained StarDist models or your custom model with this plugin.

2.2.2 Installation of Python dependencies
into a built application

A developer who wishes to add support for a particular
plugin to CellProfiler could add their dependencies
directly to the built CellProfiler application and then dis-
tribute themodified application, simplifying plugin use for
non-developer users. Further explanation is given in the
plugins documentation at https://plugins.cellprofiler.org.
Since the extra dependencies will be operating system
dependent, and since the source of such a modified

version should be extremely well trusted before a user
attempts to use it, this approach does not scale widely, but
could be useful in the context of an individual laboratory
or core facility.

2.2.3 Access of external dependencies via
containers

Since recent analyses suggest users who spend more of
their time on ‘imaging’ than ‘image analysis’ self-report

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://plugins.cellprofiler.org


WEISBART et al. 5

F IGURE 2 Wordcloud of terms used in ∼200 forum.image.sc posts tagged with ‘cellprofiler’ from February to May of 2023. ‘plugin’ (top
right), ‘install’ (bottom center), ‘StarDist’ (top left) and ‘cellpose’ (center left) are all visible.

lower computational comfort than those who spend more
time on image analysis,11 and installation issues can be a
particular pain point in working with bioimage analysis
software,4 solutions that require Python installation may
exclude a sizable fraction of the users of bioimage analysis
tools, especially beginning users. Software containers
such as Docker34 and Singularity35 are increasingly used
to distribute open-source software tools; the Biocontainers
repository36 contains more than 1000 software tools pack-
aged into containers. Containers simplify dependency
management (since packages are installed once and only
once during creation of the container) and especially
version conflicts between packages (since each tool in a
workflow can live in a separate container or application).
A built copy of CellProfiler that can access containers can
therefore, in theory, access any other software that has
been containerised. With this in mind, we have recently
converted the RunCellpose module to optionally use a
Cellpose Docker container so that Python and Cellpose
installation are no longer required, which makes our
RunCellpose plugin accessible to even the most compu-
tationally novice users as the only additional installation
it requires is the one-click download of Docker. We are
currently working to bring the optional use of Docker
to other plugins which are compatible with CellProfiler
4 (the current version), and to modules packaged with
CellProfiler 5.

2.3 Creating new CellProfiler plugins

For developers wishing to create new CellProfiler plugins,
a number of resources are available. Module templates
are available in the main CellProfiler repository at
https://github.com/CellProfiler/CellProfiler/tree/master/
cellprofiler/modules/plugins; the plugin templates walk
developers through the various steps required to create
several classes of CellProfiler modules (such as ‘image pro-
cessing’ and ‘measurement’). Additional documentation
about plugins and the plugin repository submission pro-
cess is available at https://plugins.cellprofiler.org. Finally,
a video in the NEUBIAS academy YouTube series37 walks
developers through the process of designing and creating
a new plugin, including incorporating module settings,
design decisions, and how to incorporate the actual run
code into the module, which is typically the simplest part
of writing a new plugin.
While the above approaches are suitable for addition of

everything from simple library calls to large external tools
to CellProfiler, developers of the latter may reasonably be
concerned that by distributing their tool inside a CellPro-
filer plugin, the end user may not fully appreciate that it
is an independent piece of software and forget to credit
and/or cite it. To alleviate these concerns, CellProfiler has
added a ‘doi’ property tomodules, and addedDigital Object
Identifier (DOI) citations to all existing plugins relying on

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/CellProfiler/CellProfiler/tree/master/cellprofiler/modules/plugins;
https://github.com/CellProfiler/CellProfiler/tree/master/cellprofiler/modules/plugins;
https://plugins.cellprofiler.org


6 WEISBART et al.

external libraries. TheseDOIs feed into a citation generator
tool in CellProfiler that allows users to easily export a list
of citations required by their pipeline. This functionality is
currently available in CellProfiler’s source code andwill be
widely available in the upcoming CellProfiler 5 release.

3 DISCUSSION

In the 17 years since the original CellProfiler paper38
was published, CellProfiler has been cited or mentioned
in more than 15,000 academic papers. After a code-free
pipeline creation process that the user can tune to their
own data, it is designed to multiprocess small-to-medium
datasets locally on the user’s computer or, with a few
clicks, it can export files allowing a locally tuned pipeline
to be used on clusters38 or the cloud.9 These abilities
have earned CellProfiler a reputation as a friendly and
easy-to-use platform.39 In contrast to CellProfiler’s early
days, however, we now live in a scientific world where new
bioimage analysis libraries and tools become available
weekly or even daily. We argue that having central work-
flow platforms that make it easy for developers to share
their work and users to easily try it facilitates adoption
and knowledge sharing, accelerating the field as a whole.
CellProfiler is certainly not the only such workflow plat-

form – Fiji notably contains more than 10,000 externally
contributed plugins, and other tools exist in this space,
some of which require minimal or no code (Icy, KNIME)
and some of which require code for many or most applica-
tions (Jupyter, napari). Within this ecosystem, CellProfiler
specialises in shareable, code-free, linear image analysis
workflows; users should choose the platform that best fits
their needs. Efforts tomakemultiple deep learningmodels
available, such as DeepImageJ40 and the Bioimage Model
Zoo,41 while not workflow tools, also help users find image
analysis solutions, and to try a number of different deep
learning tools side by side. However, CellProfiler’s module
templates and ability to use containerised tools help ease
the lift for developers in creating easily disseminated
plugins, and contribution to a centralised repository helps
both developers and users with discovery of new tools.
These changes, along with improved ease of citation, we
believe make CellProfiler’s plugin system a valuable part
of the image analysis workflow ecosystem.

4 CONCLUSION

Bioimage analysis is now a firmly established part of
the bioimaging universe; qualitative conclusions drawn
from human observations are slowly but steadily being
replaced by quantitative measurements of particular

image or object properties. This replacement process can
be accelerated by giving software users friendly, interactive
workflow tools that give them beginning-to-end solutions
for their image analysis tasks. Plugins play an important
role in this process as they allow users to perform specific
but necessary steps to customise and extend their analy-
ses. Plugin creation allows for rapid and straightforward
integration of new tools, components and approaches,
while allowing users continuity using workflow tools they
are already familiar with. We hope the improvement of
the CellProfiler-plugins repository encourages developers
to contribute plugins, and encourages users to integrate
these plugins into their CellProfiler pipelines. These
approaches will lead to faster workflow creation and more
reproducible workflows for all those using these tools to
solve their image analysis problems.

5 MATERIALS ANDMETHODS

Current modules in the CellProfiler-plugins repository are
written for Python42 3.8 and designed to be used with Cell-
Profiler 410 – the repository also contains unmaintained
plugins designed for CellProfiler 243 and CellProfiler
3.9 Dependencies for each plugin are indicated in the
repository’s setup.py file.
Figures in this paper were generated in Jupyter

notebook15 6.4.12 running Python 3.8.16 using the
matplotlib44 3.7.1, pandas23 1.5.2, seaborn45 0.12.2 and
wordcloud46 1.9.2 libraries.

AUTH OR CONTRIBUT IONS
Co-authors BDR, CTC, DRS, EW, FG-F and RAS all con-
tributed equally to the work presented in this manuscript,
and each has the right to list themselves first in author
order on their CVs.

ACKNOWLEDGEMENTS
The authors would like to thank (in approximate chrono-
logical order) Lee Kamentsky, Mark Bray, Allen Goodman,
Madison Bowden, Claire McQuin, Dan Ruderman,
Jane Hung, Kyle Karhohs, Duaa Ali, Anne Carpenter,
Genevieve Buckley, Tim Becker, Curtis Rueden, Carla
Iriberry, Filip Mroz, Volker Hilsenstein, Christian Clauss,
Niklas Rindtorff, Nick Whalen, Ioannis K. Moutsatsos,
Pearl Ryder, Nesta Bentum, Alice Lucas, Mario Cruz,
Jenna Tomkinson, Kevin J. Cutler, Dominic Chomchai for
submitting plugins and bugfixes to the plugins repository.
We are also grateful to the authors of CellProfiler plugins
that live elsewhere, as well as the creators of Cellpose,
StarDist, Omnipose, DeepProfiler and PyImageJ for the
creation of excellent tools that help the bioimage analysis
community.

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WEISBART et al. 7

The work was supported by the Center for Open
Bioimage Analysis (COBA) funded by National Institute
of General Medical Sciences P41 GM135019 awarded to
BAC and KWE. The work was also supported by grant
number 2020–225720 to BAC from the Chan Zuckerberg
Initiative DAF, an advised fund of Silicon Valley Com-
munity Foundation. Funding was also provided by the
São Paulo Research Foundation (FAPESP) #2022/01483-4,
#2019/24033-1 and #2020/01218-3. The funders had no role
in study design, data collection and analysis, decision to
publish or preparation of the manuscript.

CONFL ICT OF INTEREST STATEMENT
The authors declare that there are no competing interests
associated with the manuscript.

ORCID
ErinWeisbart https://orcid.org/0000-0002-6437-2458
CallumTromans-Coia https://orcid.org/0000-0002-
5518-8915
BarbaraDiaz-Rohrer https://orcid.org/0000-0002-4748-
7077
DavidR. Stirling https://orcid.org/0000-0001-6802-4103
FernandaGarcia-Fossa https://orcid.org/0000-0003-
2308-0149
RebeccaA. Senft https://orcid.org/0000-0003-0081-4170
MarkC.Hiner https://orcid.org/0000-0001-9404-7579
MarceloB. de Jesus https://orcid.org/0000-0003-0812-
1491
KevinW.Eliceiri https://orcid.org/0000-0001-8678-670X
BethA.Cimini https://orcid.org/0000-0001-9640-9318

REFERENCES
1. Rueden, C. T., Ackerman, J., Arena, E. T., Eglinger, J., Cimini,

B. A., Goodman, A., Carpenter, A. E., & Eliceiri, K. W. (2019).
Scientific Community Image Forum: A discussion forum for
scientific image software. PLoS Biology, 17, e3000340.

2. Haase, R., Fazeli, E., Legland, D., Doube, M., Culley, S.,
Belevich, I., Jokitalo, E., Schorb, M., Klemm, A., & Tischer,
C. (2022). A Hitchhiker’s guide through the bio-image analysis
software universe. Febs Letters, 596, 2472–2485.

3. Paul-Gilloteaux, P., Tosi, S., Hériché, J.-K., Gaignard, A.,
Ménager, H., Marée, R., Baecker, V., Klemm, A., Kalaš, M.,
Zhang, C., Miura, K., & Colombelli, J. (2021). Bioimage anal-
ysis workflows: Community resources to navigate through a
complex ecosystem. F1000Res, 10, 320.

4. Ouyang, W., Eliceiri, K. W., & Cimini, B. A. (2023). Moving
beyond the desktop: Prospects for practical bioimage analysis
via the web. Zenodo, 3, 1233748 https://doi.org/10.5281/zenodo.
7997781

5. Miura, K., & Nørrelykke, S. F. (2021). Reproducible image
handling and analysis. Embo Journal, 40, e105889.

6. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V.,
Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld,
S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V.,

Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-
source platform for biological-image analysis. Nature Methods,
9, 676–682.

7. de Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N.,
Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte,
T., Le Montagner, Y., Lagache, T., Dufour, A., & Olivo-Marin,
J.-C. (2012). Icy: An open bioimage informatics platform for
extended reproducible research. Nature Methods, 9, 690–696.

8. Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T.,
Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2007).
KNIME: The Konstanz Information Miner. In C. Preisach, H.
Burkhardt, L. Schmidt-Thieme, & R. Decker (Eds.), Studies in
classification, data analysis, and knowledge organization (GfKL
2007). Springer.

9. Mcquin, C., Goodman, A., Chernyshev, V., Kamentsky, L.,
Cimini, B. A., Karhohs, K. W., Doan, M., Ding, L., Rafelski, S.
M., Thirstrup, D., Wiegraebe, W., Singh, S., Becker, T., Caicedo,
J. C., & Carpenter, A. E. (2018). CellProfiler 3.0: Next-generation
image processing for biology. PLoS Biology, 16, e2005970.

10. Stirling, D. R., Swain-Bowden, M. J., Lucas, A. M., Carpenter,
A. E., Cimini, B. A., & Goodman, A. (2021). CellProfiler 4:
Improvements in speed, utility and usability. BMC Bioinformat-
ics [Electronic Resource], 22, 433.

11. Sivagurunathan, S., Marcotti, S., Nelson, C. J., Jones, M. L.,
Barry, D. J., Slater, T. J. A., Eliceiri, K.W., & Cimini, B. A. (2023).
Bridging imaging users to imaging analysis – A community
survey. bioRxiv 2023.06.05.543701 https://doi.org/10.1101/2023.
06.05.543701

12. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH
Image to ImageJ: 25 years of image analysis. Nature Methods, 9,
671–675.

13. Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W.
(2015). The ImageJ ecosystem: An open platform for biomed-
ical image analysis. Molecular Reproduction and Development,
82, 518–529.

14. Rueden, C. T., Hiner, M. C., Evans, E. L., Pinkert, M. A., Lucas,
A. M., Carpenter, A. E., Cimini, B. A., & Eliceiri, K. W. (2022).
PyImageJ: A library for integrating ImageJ and Python. Nature
Methods, 19, 1326–1327.

15. Kluyver, T., Benjamin, R.-K., Fernando, P., Brian, G., Matthias,
B., Jonathan, F., Kyle, K., H. J., G. J., Sylvain, C., Paul, I.,
Damián, A., Safia, A., & Carol, W. (2016). Jupyter Notebooks –
A publishing format for reproducible computational workflows.
In F. Loizides, & B. Schmidt (Eds.), Positioning and power in
academic publishing: players, agents and agendas (pp. 87–90).
IOS Press.

16. napari: A fast, interactive, multi-dimensional image viewer for
python. (2022). Github. https://doi.org/10.5281/zenodo.3555620

17. Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling,
J., Wählby, C., & Nilsson, M. (2013). In situ sequencing for
RNA analysis in preserved tissue and cells. Nature Methods, 10,
857–860.

18. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M., &
Cai, L. (2014). Single-cell in situ RNA profiling by sequential
hybridization. Nature Methods, 11, 360–361.

19. Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M.
H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson,

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6437-2458
https://orcid.org/0000-0002-6437-2458
https://orcid.org/0000-0002-5518-8915
https://orcid.org/0000-0002-5518-8915
https://orcid.org/0000-0002-5518-8915
https://orcid.org/0000-0002-4748-7077
https://orcid.org/0000-0002-4748-7077
https://orcid.org/0000-0002-4748-7077
https://orcid.org/0000-0001-6802-4103
https://orcid.org/0000-0001-6802-4103
https://orcid.org/0000-0003-2308-0149
https://orcid.org/0000-0003-2308-0149
https://orcid.org/0000-0003-2308-0149
https://orcid.org/0000-0003-0081-4170
https://orcid.org/0000-0003-0081-4170
https://orcid.org/0000-0001-9404-7579
https://orcid.org/0000-0001-9404-7579
https://orcid.org/0000-0003-0812-1491
https://orcid.org/0000-0003-0812-1491
https://orcid.org/0000-0003-0812-1491
https://orcid.org/0000-0001-8678-670X
https://orcid.org/0000-0001-8678-670X
https://orcid.org/0000-0001-9640-9318
https://orcid.org/0000-0001-9640-9318
https://doi.org/10.5281/zenodo.7997781
https://doi.org/10.5281/zenodo.7997781
https://doi.org/10.1101/2023.06.05.543701
https://doi.org/10.1101/2023.06.05.543701
https://doi.org/10.5281/zenodo.3555620


8 WEISBART et al.

P., . . . Oliphant, T. E. (2020). Array programming with NumPy.
Nature, 585, 357–362.

20. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau,D., Burovski, E., Peterson, P.,Weckesser,
W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., . . . Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algo-
rithms for scientific computing in Python. Nature Methods, 17,
261–272.

21. van derWalt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne,
F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). scikit-
image: Image processing in Python. PeerJ, 2, e453.

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
& Perrot, M. (2011). Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12, 2825–2830.

23. McKinney, W. (2010). Data structures for statistical computing
in Python. In van der Walt, S. & J. Millman (Eds.), Proceedings
of the 9th Python in Science Conference. SciPy, https://doi.org/10.
25080/majora-92bf1922-00a

24. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., . . . Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous
systems. Preprint at https://www.tensorflow.org/

25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning
library. arXiv [cs.LG].

26. The Open Source Definition. (2006). Open Source Initiative
https://opensource.org/osd/

27. Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021).
Cellpose: A generalist algorithm for cellular segmentation.
Nature Methods, 18, 100–106.

28. Moshkov, N., Bornholdt, M., Benoit, S., Smith, M., McQuin,
C., Goodman, A., Senft, R., Han, Y., Babadi, M., Horvath, P.,
Cimini, B. A., Carpenter, A. E., Singh, S., & Caicedo, J. C. (2022).
Learning representations for image-based profiling of perturba-
tions. bioRxiv 2022.08.12.503783. https://doi.org/10.1101/2022.08.
12.503783

29. Cutler, K. J., Stringer, C., Lo, T. W., Rappez, L., Stroustrup, N.,
Brook Peterson, S., Wiggins, P. A., & Mougous, J. D. (2022).
Omnipose: A high-precision morphology-independent solution
for bacterial cell segmentation. Nature Methods, 19, 1438–1448.

30. Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell
detection with star-convex polygons. arXiv [cs.CV].

31. pyenv. (2023). pyenv. Github.
32. Anaconda. Anaconda Software Distribution. (2016).
33. mamba. (2023). Github.
34. Dock,M. (2023). Docker: Accelerated, containerized application

development. https://www.docker.com/
35. Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity:

Scientific containers for mobility of compute. PLoS ONE, 12,
e0177459.

36. da Veiga Leprevost, F., Grüning, B. A., Alves Aflitos, S., Röst, H.
L., Uszkoreit, J., Barsnes, H., Vaudel, M., Moreno, P., Gatto, L.,
Weber, J., Bai, M., Jimenez, R. C., Sachsenberg, T., Pfeuffer, J.,
Vera Alvarez, R., Griss, J., Nesvizhskii, A. I., & Perez-Riverol, Y.
(2017). BioContainers: An open-source and community-driven
framework for software standardization. Bioinformatics, 33,
2580–2582.

37. NEUBIAS. (2020). Writing or modifying your own CellProfiler
modules [NEUBIAS Academy@Home] webinar. https://www.
youtube.com/watch?v=fgF_YueM1b8

38. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C.,
Kang, I., Friman, O., Guertin, D. A., Chang, J., Lindquist, R.
A., Moffat, J., Golland, P., & Sabatini, D. M (2006). CellPro-
filer: Image analysis software for identifying andquantifying cell
phenotypes. Genome Biology, 7, R100.

39. Wiesmann, V., Franz, D., Held, C., Münzenmayer, C.,
Palmisano, R., & Wittenberg, T. (2015). Review of free soft-
ware tools for image analysis of fluorescence cell micrographs.
Journal of Microscopy, 257, 39–53.

40. Gómez-de-Mariscal, E., García-López-De-Haro, C., Ouyang, W.,
Donati, L., Lundberg, E.,Unser,M.,Muñoz-Barrutia, A., & Sage,
D. (2021). DeepImageJ: A user-friendly environment to run deep
learning models in ImageJ. Nature Methods, 18, 1192–1195.

41. Ouyang, W., Beuttenmueller, F., Gómez-de-Mariscal, E.,
Pape, C., Burke, T., Garcia-López-de-Haro, C., Russell, C.,
Moya-Sans, L., de-la-Torre-Gutiérrez, C., Schmidt, D., Kutra,
D., Novikov, M., Weigert, M., Schmidt, U., Bankhead, P.,
Jacquemet, G., Sage, D., Henriques, R., Muñoz-Barrutia, A., . . .
Kreshuk, A. (2022). BioImage model zoo: A community-driven
resource for accessible deep learning in BioImage analysis.
bioRxiv 2022.06.07.495102. https://doi.org/10.1101/2022.06.07.
495102

42. Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference
Manual: (Python Documentation Manual Part 2). CreateSpace
Independent Publishing Platform.

43. Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J.,
Madden,K. L., Ljosa, V., Rueden,C., Eliceiri, K.W.,&Carpenter,
A. E. (2011). Improved structure, function and compatibility for
CellProfiler: Modular high-throughput image analysis software.
Bioinformatics, 27, 1179–1180.

44. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment.
Computing in Science Engineering, 9, 90–95.

45. Waskom, M. (2021). Seaborn: Statistical data visualization. The
Journal of Open Source Software, 6, 3021.

46. Mueller, A. C. (2023).Wordcloud.

How to cite this article: Weisbart, E.,
Tromans-Coia, C., Diaz-Rohrer, B., Stirling, D. R.,
Garcia-Fossa, F., Senft, R. A., Hiner, M. C., de Jesus,
M. B., Eliceiri, K. W., & Cimini, B. A. (2023).
CellProfiler plugins – An easy image analysis
platform integration for containers and Python
tools. Journal of Microscopy, 1–8.
https://doi.org/10.1111/jmi.13223

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13223 by M
assachusetts Institute O

f T
echnology, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
https://www.tensorflow.org/
https://opensource.org/osd/
https://doi.org/10.1101/2022.08.12.503783
https://doi.org/10.1101/2022.08.12.503783
https://www.docker.com/
https://www.youtube.com/watch?v=fgF_YueM1b8
https://www.youtube.com/watch?v=fgF_YueM1b8
https://doi.org/10.1101/2022.06.07.495102
https://doi.org/10.1101/2022.06.07.495102
https://doi.org/10.1111/jmi.13223

	CellProfiler plugins - An easy image analysis platform integration for containers and Python tools
	Abstract
	1 | INTRODUCTION
	2 | RESULTS
	2.1 | What are CellProfiler plugins?
	2.1.1 | Modules not suitable for a majority of CellProfiler users
	2.1.2 | Modules that require external dependencies

	2.2 | Using CellProfiler plugins
	2.2.1 | Installation via Python
	2.2.2 | Installation of Python dependencies into a built application
	2.2.3 | Access of external dependencies via containers

	2.3 | Creating new CellProfiler plugins

	3 | DISCUSSION
	4 | CONCLUSION
	5 | MATERIALS AND METHODS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	REFERENCES


