
nature methods

https://doi.org/10.1038/s41592-023-01918-8

Correspondence

Distributed-Something: scripts to leverage
AWS storage and computing for distributed
workflows at scale

O
n - d e m a n d co m p u t a t i o n a l
infrastructure, such as that
provided by Amazon Web Ser-
vices (AWS), is ideal for at-scale
parallelizable workflows (espe-

cially workflows for which demand is not
constant but comes in occasional spikes),
as neither computing power nor data stor-
age are limited by local availability and
costs are limited to actual resource usage.
However, cloud infrastructure configura-
tion is time-consuming and confusing, and

cloud-native services that automatically
monitor and scale resources can increase the
workflow price. Distributed-Something (DS)
is a collection of easy-to-use Python scripts
that leverage the power of the former while
minimizing the problems of the latter.

DS makes it possible for a developer with
moderate computational comfort to design
a way to deploy a new tool or program to the
cloud, and for a user with relatively low com-
putational comfort to then deploy this tool
at will. It simplifies the process of using AWS

by scripting the majority of the setup, trig-
gering and monitoring of jobs, requiring only
minimal human-readable config files to be
edited before the run and simple, single-line
commands to trigger each step. This increases
the ability of novice computational users to be
able to execute workflows and lowers the bar-
rier to creating a new workflow for developers.
Unlike most existing tools for running hosted
containerized analyses, it does not require
learning new workflow languages (either for
new tool addition or end-user deployment)

 Check for updates

DS
creates
SQS
queue

DS
places
messages
in queue

DS creates
cluster,
service,
and task
definition

Elastic
Container
Service
(ECS)

Elastic
Container
Service
(ECS)

Elastic
Cloud
Compute
(EC2)

Simple
Storage
Service
(S3)

Simple
Queue
Service
(SQS)

Simple
Queue
Service
(SQS)

Simple
Queue
Service
(SQS)

DS
places
ECS
config
on S3

DS
creates
log
group

DS creates
spot fleet

EC2 reads
ECS config
from S3

Containers
placed on
spot
instances
by ECS

Cloudwatch

Elastic
Container
Service
(ECS)

Elastic
Cloud
Compute
(EC2)

Simple
Storage
Service
(S3)

Container
writes logs
to
CloudWatch

Container
deletes SQS
message if
task successfully
completes,
replaces if not

CloudWatch
alarm
placed on
EC2 instance
by container

Container
renames
EC2
instance
and EBS
volume

ECS input
files read
from S3
(with S3FS
or boto3)

ECS output files
written to S3
(with awscli)

SQS uses
number of
messages
to monitor
DS progress

Container pulls
messages
from SQS to
determine
job parameters

Cloudwatch

Simple
Queue
Service
(SQS)

Elastic
Container
Service
(ECS)

Elastic
Cloud
Compute
(EC2)

Simple
Storage
Service
(S3)

DS tells
logs to
export from
CloudWatch

DS destroys
cluster,
service
and task
definition

DS
destroys
SQS
queue

DS adjusts
scaling,
destroys
spot fleet

CloudWatch
logs exported
to S3

Cloudwatch

run.py setup run.py submitJobs run.py startCluster Distributed-Something
Docker automatically:

run.py monitor

a b c d e

Fig. 1 | Distributed-Something. Distributed-Something uses four single-line
commands to coordinate five separate AWS services for the parallel processing
of jobs by any Dockerized software. a–c, Three execution commands prepare
various aspects of AWS infrastructure: ‘setup’ (a) prepares SQS and ECS,
‘submitJobs’ (b) sends jobs to SQS, and ‘startCluster’ (c) initiates and coordinates

the spot fleet request. d, After these commands, the Distributed-Something
Docker automatically completes setup and jobs run. e, A fourth, optional
command, ‘monitor’, assists in downscaling and cleaning up resources as they are
no longer required. See documentation at https://distributedscience.github.io/
Distributed-Something for a deeper discussion of each step.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01918-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-01918-8&domain=pdf
https://distributedscience.github.io/Distributed-Something
https://distributedscience.github.io/Distributed-Something

nature methods

Correspondence

and minimizes the understanding require-
ment of the AWS components that are used
(see Supplementary Table 1).

We originally sought to simplify large-scale
scientific image analysis using our CellProfiler
software, creating Distributed-CellProfiler1.
Recognizing the utility of the framework, we
herein provide Distributed-Something as a
fully customizable template for the distribu-
tion of any Dockerized2 workflow. We show
its extensibility with two example implemen-
tations of DS in the open-source bioimage
ecosystem (though DS is in no way limited to
bioimage analysis).

ImageJ is the most widely used open-source
software for bioimage analysis3. Fiji is an
open-source distribution of ImageJ that
comes bundled with libraries and plug-ins that
extend ImageJ’s functionality4. Fiji scripts can
be run at scale using Distributed-Fiji, allow-
ing the user to take advantage of its plug-in
ecosystem and its ability to run user-written
scripts in many coding languages. As with
all DS implementations, the computational
environment can be tailored to each task — for
example, many small machines can be used
to individually process thousands of files or a
large machine can be use to perform a single
task (such as stitching) on many files.

To increase shareability of especially large
bioimage data, the Open Microscopy Envi-
ronment5 team is creating next-generation
file formats, including .ome.zarr6, to make
bioimaging data more findable, accessible,
interoperable and reusable (FAIR)7. We cre-
ated Distributed-OMEZarrCreator to simplify
the conversion of large bioimage datasets to
.ome.zarr’s and thus encourage the adoption
of this format and simplify sharing of bioim-
aging data via resources such as the Image
Data Resource8.

DS coordinates five separate AWS resources.
Data are stored on AWS in its Simple Storage
Service (S3), and ‘spot fleets’ of Elastic Com-
pute Cloud (EC2) instances (or virtual comput-
ers) access that data, run the ‘Something’ on
that data, and upload the end product back
to S3. Elastic Container Services (ECS) places
your customized Docker containers on the
EC2 machines while Simple Queue Service

(SQS) tracks the list of jobs, and Cloudwatch
provides logs and metrics on the services
you are using, allowing configuration, opti-
mization and troubleshooting. A developer
can easily customize DS code to download
data from or upload data to the cloud and/or
on-premises storage outside the AWS account
used for processing.

DS stands out in the simplicity of user exe-
cution. Only two human-readable files must
be edited to configure individual DS runs: the
Config file and the Job file. The Config file con-
tains information about naming, the number
and size of machines to use, and the maximum
price you are willing to pay for the machines,
minimizing computational costs. The Job file
lists all of the individual tasks to run in parallel
by setting both the metadata shared between
tasks and the metadata to parse individual
tasks. An additional Fleet file contains infor-
mation about AWS-account-specific infor-
mation but does not need to be edited after
initial creation.

Three single-line Python commands initiate
all of the AWS architecture creation and coordi-
nation, and an optional fourth command pro-
vides additional monitoring and automated
clean-up of resources (Fig. 1). Implementing
a new version of DS can be done in a matter of
hours by a developer with moderate Python
abilities. Creating a Distributed version of soft-
ware that itself takes input scripts (for example,
Distributed-Fiji) makes workflow customiza-
tion possibilities near limitless with no extra
overhead. Over 1,000 containers are already
registered on BioContainers9, and, conceptu-
ally, any could be put in the DS framework.

We believe DS will enable the scientific com-
munity to quickly, easily and cost-effectively
scale their parallelizable workflows using
AWS. As this is an open-source tool, we look
forward to contributions and implementa-
tions from within and outside the bioimage
analysis community.

Code availability
Distributed-Something is available at
https://github.com/DistributedScience/
Distributed-Something and https://doi.org/
10.5281/zenodo.7949283.

Distributed-CellProfiler is available at
https://github.com/DistributedScience/
Distributed-CellProfiler and https://doi.
org/10.5281/zenodo.7949380. Distributed-Fiji
is available at https://github.com/Dis-
tributedScience/Distributed-Fiji and
https://doi.org/10.5281/zenodo.7949387.
Distributed-OMEZarrCreator is available
at https://github.com/DistributedScience/
Distributed-OMEZarrCreator and https://doi.
org/10.5281/zenodo.7949394.

Erin Weisbart    & Beth A. Cimini   
Imaging Platform, Broad Institute of MIT
and Harvard, Cambridge, MA, USA.

 e-mail: bcimini@broadinstitute.org

Published online: xx xx xxxx

References
1. McQuin, C. et al. PLoS Biol. 16, e2005970 (2018).
2. Merkel, D. Linux J. 2, 2014 (2014).
3. Rueden, C. T. et al. BMC Bioinformatics 18, 529 (2017).
4. Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).
5. Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K.

Science 300, 100–102 (2003).
6. Moore, J. et al. Nat. Methods 18, 1496–1498 (2021).
7. Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).
8. Williams, E. et al. Nat. Methods 14, 775–781 (2017).
9. da Veiga Leprevost, F. et al. Bioinformatics 33,

2580–2582 (2017).

Acknowledgements
We thank Juan Caicedo and Shantanu Singh for creating the
original Distributed-CellProfiler, Callum Tromans-Coia, Josh
Moore and Sébastien Besson for their assistance with DOZC,
and other members of the Cimini and Carpenter-Singh
labs for their feedback on this project and manuscript.
This study was supported by Calico Life Sciences LLC,
NIH P41 GM135019, and grant 2020-225720 from the Chan
Zuckerberg Initiative DAF. The funders had no role in study
design, data collection and analysis, decision to publish or
preparation of the manuscript.

Author contributions
B.A.C. conceived the project, wrote DS and DF, assisted in
writing DCP, and revised the manuscript. E.W. wrote the
manuscript, wrote DOZC, and assisted with DS and DF.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-023-01918-8.

Peer review information Nature Methods thanks Vladimír
Ulman and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

http://www.nature.com/naturemethods
https://github.com/DistributedScience/Distributed-Something
https://github.com/DistributedScience/Distributed-Something
https://doi.org/10.5281/zenodo.7949283
https://doi.org/10.5281/zenodo.7949283
https://github.com/DistributedScience/Distributed-CellProfiler
https://github.com/DistributedScience/Distributed-CellProfiler
https://doi.org/10.5281/zenodo.7949380
https://doi.org/10.5281/zenodo.7949380
https://github.com/DistributedScience/Distributed-Fiji
https://github.com/DistributedScience/Distributed-Fiji
https://doi.org/10.5281/zenodo.7949387
https://github.com/DistributedScience/Distributed-OMEZarrCreator
https://github.com/DistributedScience/Distributed-OMEZarrCreator
https://doi.org/10.5281/zenodo.7949394
https://doi.org/10.5281/zenodo.7949394
http://orcid.org/0000-0002-6437-2458
http://orcid.org/0000-0001-9640-9318
mailto:bcimini@broadinstitute.org
https://doi.org/10.1038/s41592-023-01918-8

	Distributed-Something: scripts to leverage AWS storage and computing for distributed workflows at scale
	Acknowledgements
	Fig. 1 Distributed-Something.

