
nature methods

https://doi.org/10.1038/s41592-023-01918-8

Correspondence

Distributed-Something: scripts to leverage  
AWS storage and computing for distributed  
workflows at scale

O
n - d e m a n d  co m p u t a t i o n a l 
infrastructure, such as that 
provided by Amazon Web Ser-
vices (AWS), is ideal for at-scale 
parallelizable workflows (espe-

cially workflows for which demand is not 
constant but comes in occasional spikes), 
as neither computing power nor data stor-
age are limited by local availability and 
costs are limited to actual resource usage. 
However, cloud infrastructure configura-
tion is time-consuming and confusing, and 

cloud-native services that automatically 
monitor and scale resources can increase the 
workflow price. Distributed-Something (DS) 
is a collection of easy-to-use Python scripts 
that leverage the power of the former while 
minimizing the problems of the latter.

DS makes it possible for a developer with 
moderate computational comfort to design 
a way to deploy a new tool or program to the 
cloud, and for a user with relatively low com-
putational comfort to then deploy this tool 
at will. It simplifies the process of using AWS 

by scripting the majority of the setup, trig-
gering and monitoring of jobs, requiring only 
minimal human-readable config files to be 
edited before the run and simple, single-line 
commands to trigger each step. This increases 
the ability of novice computational users to be 
able to execute workflows and lowers the bar-
rier to creating a new workflow for developers. 
Unlike most existing tools for running hosted 
containerized analyses, it does not require 
learning new workflow languages (either for 
new tool addition or end-user deployment) 
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Fig. 1 | Distributed-Something. Distributed-Something uses four single-line 
commands to coordinate five separate AWS services for the parallel processing 
of jobs by any Dockerized software. a–c, Three execution commands prepare 
various aspects of AWS infrastructure: ‘setup’ (a) prepares SQS and ECS, 
‘submitJobs’ (b) sends jobs to SQS, and ‘startCluster’ (c) initiates and coordinates 

the spot fleet request. d, After these commands, the Distributed-Something 
Docker automatically completes setup and jobs run. e, A fourth, optional 
command, ‘monitor’, assists in downscaling and cleaning up resources as they are 
no longer required. See documentation at https://distributedscience.github.io/
Distributed-Something for a deeper discussion of each step.
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and minimizes the understanding require-
ment of the AWS components that are used 
(see Supplementary Table 1).

We originally sought to simplify large-scale 
scientific image analysis using our CellProfiler 
software, creating Distributed-CellProfiler1. 
Recognizing the utility of the framework, we 
herein provide Distributed-Something as a 
fully customizable template for the distribu-
tion of any Dockerized2 workflow. We show 
its extensibility with two example implemen-
tations of DS in the open-source bioimage 
ecosystem (though DS is in no way limited to 
bioimage analysis).

ImageJ is the most widely used open-source 
software for bioimage analysis3. Fiji is an 
open-source distribution of ImageJ that 
comes bundled with libraries and plug-ins that 
extend ImageJ’s functionality4. Fiji scripts can 
be run at scale using Distributed-Fiji, allow-
ing the user to take advantage of its plug-in 
ecosystem and its ability to run user-written 
scripts in many coding languages. As with 
all DS implementations, the computational 
environment can be tailored to each task — for 
example, many small machines can be used 
to individually process thousands of files or a 
large machine can be use to perform a single 
task (such as stitching) on many files.

To increase shareability of especially large 
bioimage data, the Open Microscopy Envi-
ronment5 team is creating next-generation 
file formats, including .ome.zarr6, to make 
bioimaging data more findable, accessible, 
interoperable and reusable (FAIR)7. We cre-
ated Distributed-OMEZarrCreator to simplify 
the conversion of large bioimage datasets to 
.ome.zarr’s and thus encourage the adoption 
of this format and simplify sharing of bioim-
aging data via resources such as the Image 
Data Resource8.

DS coordinates five separate AWS resources. 
Data are stored on AWS in its Simple Storage 
Service (S3), and ‘spot fleets’ of Elastic Com-
pute Cloud (EC2) instances (or virtual comput-
ers) access that data, run the ‘Something’ on 
that data, and upload the end product back 
to S3. Elastic Container Services (ECS) places 
your customized Docker containers on the 
EC2 machines while Simple Queue Service 

(SQS) tracks the list of jobs, and Cloudwatch 
provides logs and metrics on the services 
you are using, allowing configuration, opti-
mization and troubleshooting. A developer 
can easily customize DS code to download 
data from or upload data to the cloud and/or 
on-premises storage outside the AWS account 
used for processing.

DS stands out in the simplicity of user exe-
cution. Only two human-readable files must 
be edited to configure individual DS runs: the 
Config file and the Job file. The Config file con-
tains information about naming, the number 
and size of machines to use, and the maximum 
price you are willing to pay for the machines, 
minimizing computational costs. The Job file 
lists all of the individual tasks to run in parallel 
by setting both the metadata shared between 
tasks and the metadata to parse individual 
tasks. An additional Fleet file contains infor-
mation about AWS-account-specific infor-
mation but does not need to be edited after 
initial creation.

Three single-line Python commands initiate 
all of the AWS architecture creation and coordi-
nation, and an optional fourth command pro-
vides additional monitoring and automated 
clean-up of resources (Fig. 1). Implementing 
a new version of DS can be done in a matter of 
hours by a developer with moderate Python 
abilities. Creating a Distributed version of soft-
ware that itself takes input scripts (for example, 
Distributed-Fiji) makes workflow customiza-
tion possibilities near limitless with no extra 
overhead. Over 1,000 containers are already 
registered on BioContainers9, and, conceptu-
ally, any could be put in the DS framework.

We believe DS will enable the scientific com-
munity to quickly, easily and cost-effectively 
scale their parallelizable workflows using 
AWS. As this is an open-source tool, we look 
forward to contributions and implementa-
tions from within and outside the bioimage 
analysis community.

Code availability
Distributed-Something is available at 
https://github.com/DistributedScience/
Distributed-Something and https://doi.org/ 
10.5281/zenodo.7949283. 

Distributed-CellProfiler is available at 
https://github.com/DistributedScience/
Distributed-CellProfiler and https://doi.
org/10.5281/zenodo.7949380. Distributed-Fiji 
is available at https://github.com/Dis-
tributedScience/Distributed-Fiji  and 
https://doi.org/10.5281/zenodo.7949387. 
Distributed-OMEZarrCreator is available 
at https://github.com/DistributedScience/
Distributed-OMEZarrCreator and https://doi.
org/10.5281/zenodo.7949394.
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