
Nature Methods | Volume 22 | March 2025 | 621–633 621

nature methods

https://doi.org/10.1038/s41592-024-02537-7Resource

A genome-wide atlas of human cell 
morphology
 

Meraj Ramezani1,2,11, Erin Weisbart    1,11, Julia Bauman1,8,11, Avtar Singh1,9,11, 
John Yong    3, Maria Lozada1,2, Gregory P. Way    1, Sanam L. Kavari1,10, 
Celeste Diaz1,8, Eddy Leardini    1,2, Gunjan Jetley1,2, Jenlu Pagnotta    1,2, 
Marzieh Haghighi    1, Thiago M. Batista2,4, Joaquín Pérez-Schindler2,4, 
Melina Claussnitzer    2,4,5, Shantanu Singh    1, Beth A. Cimini    1, 
Paul C. Blainey    1,6,7,12, Anne E. Carpenter    1,12, Calvin H. Jan3,12 & 
James T. Neal    1,2,4,12 

A key challenge of the modern genomics era is developing empirical 
data-driven representations of gene function. Here we present the 
first unbiased morphology-based genome-wide perturbation atlas in 
human cells, containing three genome-wide genotype–phenotype maps 
comprising CRISPR–Cas9-based knockouts of >20,000 genes in >30 million 
cells. Our optical pooled cell profiling platform (PERISCOPE) combines a 
destainable high-dimensional phenotyping panel (based on Cell Painting) 
with optical sequencing of molecular barcodes and a scalable open-source 
analysis pipeline to facilitate massively parallel screening of pooled 
perturbation libraries. This perturbation atlas comprises high-dimensional 
phenotypic profiles of individual cells with sufficient resolution to cluster 
thousands of human genes, reconstruct known pathways and protein–
protein interaction networks, interrogate subcellular processes and identify 
culture media-specific responses. Using this atlas, we identify the poorly 
characterized disease-associated TMEM251/LYSET as a Golgi-resident 
transmembrane protein essential for mannose-6-phosphate-dependent 
trafficking of lysosomal enzymes. In sum, this perturbation atlas and 
screening platform represents a rich and accessible resource for connecting 
genes to cellular functions at scale.

Large-scale DNA sequencing has transformed our ability to identify and 
catalog diverse genotypic information but created a new bottleneck: 
characterizing the diverse impacts of genotype on human biology.  
Thus, systematically connecting human genes and genotypes to 
disease- and trait-relevant phenotypes remains a grand challenge for 
biomedicine.

Pooled CRISPR screens1 have proven a powerful tool for tackling 
this challenge, but typically require compromising on either pheno-
typic content or scale. Genome-scale pooled CRISPR screens enable 
systematic assessment of gene function but compatible phenotypes, 

such as proliferation or cell death, are often simple or require a targeted 
assay, making them inappropriate for assessing many biologically  
relevant processes in human cells, which are often subtle, graded and/or  
complex2. In contrast, high-content profiling approaches such as 
imaging, transcriptomics, proteomics and metabolomics can capture  
hundreds of quantitative phenotypes for each sample, providing a rich 
phenotypic profile, but are typically incompatible with genome-scale 
perturbation. A notable exception is Perturb-seq3–6, which has very 
recently been applied to profile the effects of CRISPR interference 
(CRISPRi) knockdown (KD) of the expressed genome of the human 
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we conjugated phenotypic probes to fluorophores using a disulfide 
linker25,26. This strategy allows five-color labeling followed by treat-
ment with tris(2-carboxyethyl)phosphine (TCEP), a reducing agent, 
resulting in linker cleavage and liberation of linked fluorophores, free-
ing up fluorescent channels for ISS (Fig. 1c). To analyze these data, we 
modified the standard Cell Painting image analysis workflow within the 
open source image analysis software CellProfiler27 to handle the added 
complexity of pooled perturbations, including the incorporation of 
image alignment across different resolutions and barcode calling12 
(Fig. 1d). Similarly, we adapted our data analysis workflow based on the 
open-source Pycytominer28 library (Methods) to process single-cell 
profiles using pooled data rather than arrayed data.

Morphology-based genome-wide perturbation maps in HeLa 
cells
We first aimed to demonstrate the scalability and robustness of the 
PERISCOPE pipeline by executing two whole-genome pooled opti-
cal CRISPR screens in human cervical cancer cells (HeLa) in separate 
growth media (Dulbecco’s modified Eagle medium (DMEM) and human 
plasma-like medium (HPLM), detailed below). For the HeLa DMEM 
screen, we used 30 identically prepared wells of six-well plates and 
collected morphological profiles from 12,312,520 individual cells 
yielding 20,421 gene-level profiles with an average 491 cells per gene 
(s.d. of 655) and 125 cells per guide (s.d. of 327) (cell coverage numbers 
exclude nontargeting controls, which are overrepresented; Extended 
Data Fig. 2a). Similarly, the HeLa HPLM screen was 24 wells, 9,111,690 
cells, 20,420 gene-level profiles, 366 cells per gene (s.d. of 364) and 
93 cells per guide (s.d. of 181). As expected, the PERISCOPE pipeline 
reported that perturbation of TOMM20, the direct target of the anti-
body stain for mitochondria, impacted the expected mitochondrial 
features (Extended Data Fig. 2c,d). Crucially, optical sgRNA counts 
were highly correlated with counts obtained from next-generation 
sequencing (NGS) of perturbed cells (Extended Data Fig. 2e,f), validat-
ing ISS accuracy and between biological screen replicates, confirming 
screen robustness (Extended Data Fig. 2g,h).

We next applied a hit calling pipeline that we designed to iden-
tify gene perturbation signatures above background noise using 
image-based features. Optical profiling collects spatial information 
and thus our pipeline was able to identify two classes of screen hit: 
‘whole-cell’ hit genes, which were defined based upon aggregate signal 
from all cell compartments in a manner typical of image-based profil-
ing experiments, and ‘compartment’ hit genes identified by imaging 
measurements from a subset of the five labeled subcellular compart-
ments (Methods). Using a false discovery rate (FDR) of 1%, we identified 
891/956 whole-cell hit genes, and 1,039/597 compartment hit genes, for 
a total of 1,930/1,553 hits (DMEM/HPLM) (Fig. 2a and Supplementary 
Table 2). As the choice of FDR cut-off is arbitrary, we show that less 
stringent FDRs produce larger hit lists (Extended Data Fig. 3a) with a 
corresponding decrease in average profile strength (Extended Data 
Fig. 3b) calculated using a metric to detect perturbation signal against 
a background comprising negative controls (mAP)29. Unsurprisingly, 
the whole-profile hits show much higher profile strength than com-
partment hits since the availability of complete profile information 
enhances signal detection.

We next performed descriptive analyses of our hits to demonstrate 
biological signal in these screens. We found compartment hit genes 
in each subcellular compartment, demonstrating that each channel 
is providing useful information (Fig. 2b and Extended Data Fig. 4a–d). 
Importantly, we also observed that knocking out genes known to act 
in well-defined cell compartment-specific roles produced strong 
morphological phenotypes in those compartments. Specifically, we 
selected genes encoding five compartment-associated protein com-
plex members and grouped their morphological profiles by complex. 
For each of these complexes, we observed an enrichment in phenotypic 
features extracted from the expected cellular compartment (Fig. 2c). 

chronic myeloid leukemia cell line K562 (ref. 7). This study demon-
strated the immense value of generating rich, high-dimensional repre-
sentations of cell state at genome scale using a new (and not yet widely 
available) DNA sequencing technology8,9 and resource-intensive data 
generation effort.

Optical pooled screening, which combines image-based phe-
notyping with image-based sequencing of perturbation barcodes, 
has emerged as a promising and complementary approach for 
high-dimensional genotype–phenotype mapping at single-cell reso-
lution that is scalable and cost effective10–13. Optical pooled screens 
enable quantitative assessment of phenotypes invisible to molecular 
profiling approaches, such as cell morphology and subcellular localiza-
tion, with greater throughput than arrayed image-based screens14 and, 
in contrast to pooled enrichment-based imaging approaches15–18, have 
no requirement for physical selection or predefinition of phenotypes.

Here, we combined unbiased high-dimensional image-based cell 
phenotyping with massively parallel optical pooled CRISPR screens 
to build the first genome-scale perturbation atlas of morphology 
phenotypes in human cells. We report the design of an optimized cell 
phenotyping panel based on the popular Cell Painting19,20 image-based 
profiling assay that enables five-color fluorescence microscopy of cell 
phenotypes followed by four-color in situ sequencing by synthesis (ISS) 
to assign perturbations to cells. We also built a scalable, open-source, 
cloud-based pipeline for generating barcoded image-based profiles 
from genome-scale perturbation datasets. We use this technology to 
execute two whole-genome pooled optical CRISPR screens in human 
cervical cancer cells (HeLa) cultured either in traditional cell culture 
medium or physiologic medium21, profiling the effects of >20,000 
single gene knockouts (KOs) in unbiased fashion and mapping 
genome-wide gene-by-environment interactions. We additionally 
apply our approach in human lung cancer cells (A549). Together, this 
work establishes a valuable resource for connecting human genotypes 
to high-dimensional image-based cellular phenotypes at scale.

Results
High-dimensional optical CRISPR screens at genome scale
To assess genome-wide KO effects on cell morphology, we first con-
structed a whole-genome CRISPR guide RNA library optimized for 
optical screening. To build this library, we selected, on average, four 
single guide (sg)RNAs per gene from existing libraries22,23, identifying 
sgRNA sequences that would allow for total deconvolution of the sgRNA 
library in 12 cycles of ISS while also allowing for a Levenshtein distance 
of 2 between sgRNA sequences to enable error detection24, resulting in 
a library containing 80,408 sgRNAs targeting 20,393 genes (Supple-
mentary Table 1). We cloned the sgRNA library into the CRISPR droplet 
sequencing (CROP-seq) vector5, enabling expression and direct ISS of 
sgRNA sequences (henceforth referred to as barcodes) and packaged 
it for lentiviral delivery.

To comprehensively map genome-wide gene KO effects to 
high-dimensional image-based phenotypes, we built a high-throughput 
data generation and analysis pipeline, perturbation effect readout 
in situ with single-cell optical phenotyping (PERISCOPE), compris-
ing a suite of highly scalable wet and dry laboratory protocols that 
enables facile screening of genome-scale perturbation libraries by 
optical profiling. We first developed an optimized, destainable vari-
ant of the Cell Painting panel to collect morphological data by fluo-
rescence imaging of cell compartments, followed by ISS of sgRNAs 
to assign perturbations to cells (Fig. 1a). This approach results in five 
phenotypic images for each cell—phalloidin (actin), anti-TOMM20 
antibody (mitochondria), wheat germ agglutinin (WGA) (Golgi and 
cell membrane), concanavalin A (ConA) endoplasmic reticulum (ER)) 
and 4,6-diamidino-2-phenylindole (DAPI) (nucleus)—plus 12 sequenc-
ing images, which are used to identify sequential sgRNA bases (Fig. 1b 
and Extended Data Fig. 1). To overcome spectral overlap between fluo-
rescent phenotyping markers and fluorescent sequencing signal, 
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For example, while perturbations targeting outer mitochondrial mem-
brane proteins produce morphological phenotypes throughout the 
cell, a plurality (54% DMEM/52% HPLM) of the overall signal is concen-
trated in the mitochondria. Likewise, sgRNAs targeting genes involved 
in protein mannosylation display an enrichment in phenotypic features 
from the ER, where synthesis of mannosyl donor substrates and man-
nosyltransfer to proteins takes place30. Unsurprisingly, genes involved 
in highly pleiotropic processes (for example, cortical cytoskeleton), 
produce effects across cell compartments.

We next benchmarked image-based gene KO profiles against 
existing databases of gene function. First, using profile correlation 
between gene KOs as a proxy for functional similarity between genes, 
we compared our screen data with the protein–protein interaction 
databases CORUM31 and STRING32. Of 1,930/1,553 total hits, we identi-
fied 877/671 genes belonging to 1,350/953 unique complexes present 
in the CORUM4.0 database (DMEM/HPLM, respectively). Profiles from 
hit gene pairs within a cluster showed higher correlation values than 
the background distribution of all possible hit gene pairs (Fig. 2d). 
Additionally, morphological profile pairs with higher correlations 
demonstrated higher protein–protein interaction confidence scores 
from the STRING database (Fig. 2e).

We performed unbiased clustering of screen hits based on mor-
phological similarity, and visualized high-level similarity between 
morphological profiles via two-dimensional uniform manifold approxi-
mation and projection (UMAP) embedding (Fig. 2f,g). We observed  
logical clustering by biological function across an array of processes, 
such as DNA replication, lysosome acidification, Golgi vesicle transport, 
messenger RNA processing, ribosome biogenesis, protein N-linked 
glycosylation, mannosylation, aerobic respiration and others. Hier-
archical clustering of all hit genes based on the full high-dimensional 
profiles also revealed biologically coherent clustering of perturbations 

targeting related genes (Extended Data Fig. 5a,b). For example, targeted 
exploration of the hierarchical clusters in the DMEM condition shows 
that genes encoding various types of ribosomal proteins are largely 
grouped into three distinct clusters (Extended Data Fig. 6a). The largest 
cluster is enriched for genes encoding the large and the small subunits 
of the mitochondrial ribosome, which is essential in the translation 
of mitochondrial genes33, while two other clusters show enrichment 
for components of the large 60S subunit and the small 40S subunit 
of the mature 80S eukaryotic ribosome, respectively34. This example 
highlights the ability of optical pooled screens to capture structural 
information, as recently demonstrated10. We also found that signaling 
pathways were often well captured: as an example, perturbations tar-
geting the phosphatidylinositol 3‑kinase/AKT serine–threonine protein 
kinase (PI3K/AKT) signaling pathway largely fall into two distinct clus-
ters (Extended Data Fig. 6b). This pathway is involved in the cell cycle, 
growth and proliferation, and implicated in the progression of various 
cancers.35 Interestingly, components that have a stimulatory effect on 
the pathway such as RPTOR, MTOR or MYC strongly correlate with each 
other and also demonstrate significant anticorrelation to inhibitory 
factors such as PTEN, TSC1 or TSC2. The ability of the morphological 
profiles to distinguish the directionality of the signaling factors is a 
useful tool in understanding the underlying biology.

We subsequently evaluated the extent to which image-based gene 
KO profiles were correlated with gene KO fitness effects using the Broad 
Institute’s Dependency Map (DepMap) database36. While essential 
genes were more likely, on average, to produce a high signal score 
(Methods), the majority of screen hits (80.4%/75.6% for DMEM/HPLM) 
were nonessential genes, consistent with most gene KOs producing 
optical phenotypes beyond simple cell toxicity (Fig. 2h and Extended 
Data Fig. 7a–c). Previous work has shown that Cell Painting can detect 
many specific cell health readouts including cell viability and cell cycle, 
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so that even cytotoxic perturbations, such as KO of essential genes, can 
generate distinct morphological profiles37. Further, morphological 
signal score was not well correlated with baseline gene expression, as 
many genes expressed at low levels still produce significant morpho-
logical signal when perturbed (Extended Data Fig. 7d,e).

Comparing gene-by-environment interactions at genome 
scale
Cell metabolism is influenced by a vast array of interactions between 
genes and environmental stimuli and, as such, in vitro genetic screens 
carried out in traditional cell culture media, which poorly recapitulate 
physiologic environments, may fail to capture metabolically relevant 
phenotypes. Recently, in contrast to typical laboratory culture medium 
DMEM, ‘physiologic media’ such as Plasmax38 or HPLM39 have been devel-
oped as tools to study the effects of genetic perturbations under envi-
ronmental conditions designed to more accurately mimic in vivo human 
physiology and, in a recent study, HPLM was shown to dramatically alter 
the spectrum of gene essentiality in K562 cells21. Such studies demon-
strate the usefulness of screening under physiologically relevant condi-
tions, but have been limited to growth assays, preventing the systematic 
assessment of gene perturbation on high-dimensional cell phenotypes.

In addition to their experimental tractability and prior validation 
in optical screening workflows10–12, HeLa cells have been demonstrated 
to exhibit sensitivity to metabolic environmental cues such as altered 
glucose levels40,41. To investigate these differences, we performed gene 
set enrichment analysis (GSEA) between the HeLa screens, a computa-
tional method that determines whether there are statistically significant 
differences between two biological states using ranked lists42,43. Our 
lists were ranked by the strength of each gene’s profile compared with 
control profiles using their ‘morphological signal score’ (Methods). On 
the basis of the GSEA analysis, 391 gene sets were enriched in the DMEM 
screen and 321 were enriched in the HPLM screen (Supplementary 
Table 3). Of these, 275 were common between the two screens, 116 were 
specific to the DMEM screen and 46 were specific to the HPLM screen. 
We visualized the GSEA results in a gene enrichment map (Fig. 3a).

To further visualize similarities between screens, we generated 
comparative diagonally merged heat maps, wherein only hits from 
both screens are plotted, the cluster order is set by one arm and the 

second arm is plotted in the same order (Fig. 3b–f). We observed that 
many genetic perturbations yield similar morphological impacts in 
both media types. For example, genes associated with small subunit 
ribosomal RNA maturation (Fig. 3c) and PI3K AKT mTOR signaling 
(Fig. 3d) exhibited strong similarity in pattern and strength of cor-
relations in both DMEM and HPLM. These similarities in correlation 
patterns and strength across a variety of core processes in the same cell 
line indicate shared central biology and consistency of the screening 
method. We also observed that iron sulfur cluster assembly (Fig. 3e), 
which is required for mitochondrial respiration44, mitochondrial RNA 
metabolic processes and mitochondrial transcription processes was 
selectively enriched in the DMEM screen. Taken together, the overall 
enrichment of hits associated with central carbon metabolism in the 
DMEM screen may be reflective of metabolic differences induced 
by high (>25 mM) glucose levels present in DMEM21. Conversely, we 
also observed selective enrichment of processes in the HPLM screen 
related to DNA damage repair, such as cellular response to gamma 
radiation (Fig. 3f), positive regulation of DNA recombination and 
double-stranded break repair. This process enrichment is also prob-
ably linked to metabolic rewiring induced by substantial decreases in 
glucose and glutamine upon culture in HPLM as HeLa cells have been 
previously shown to exhibit hallmarks of DNA damage when cultured 
with reduced concentrations of these nutrients45.

Morphology-based genome-wide perturbation maps in human 
lung cancer cells
After successfully completing our first two whole-genome screens, we 
wanted to maximize the extensibility of our next whole-genome data-
set by using A549 human lung cancer cells, a cell line commonly used 
for Cell Painting46–48. This decision was driven by the morphological 
profiling field’s active curation19 of Cell Painting datasets and ongoing 
efforts by other laboratories to develop alignment methods49. Using 54 
identically prepared wells of six-well plates, we collected morphological  
profiles from 11,211,357 single cells, which yielded 20,393 gene-level  
profiles at an average representation of 460 cells per gene (s.d. of 
707) and 117 cells per guide (s.d. of 354) (excluding nontargeting  
controls). Technical quality metrics such as representation, barcode 
calling and NGS concordance and biological replicate concordance 

Fig. 2 | Summary of the results from two PERISCOPE screens at the whole-
genome scale performed in HeLa cells in two growth media (DMEM and 
HPLM). a, A bar graph representing the number of hit genes identified. Green 
represents hit genes based on individual compartments (ER, mitochondria 
(mito), actin, DNA and Golgi/membrane) and blue represents hit genes 
based on the overall profile. b, The distribution of hit genes based on 
individual compartments (from a). It is possible for a gene to be hit in multiple 
compartments without being a whole-cell hit, see Extended Data Fig. 4c–f for 
details. c, Pie charts showing the average normalized fraction of the number  
of features significantly different from controls in each phenotypic channel  
for the genes in the indicated set. Filled wedges represent the channel in which 
the protein products are known to be present. d, The distributions of optical 
profile correlations between random hit gene pairs (blue) versus correlations 
between gene pairs in CORUM4.0 protein complexes (red). e, A boxen plot 

(letter-value plot) representing STRING scores divided into bins based on 
PERISCOPE profile correlation between gene pairs, n = 1,930 genes for DMEM 
and n = 1,553 genes for HPLM. The boxen plots display the data as a distribution 
where the center line represents the median, the central box represents the 
interquartile range from 25th to 75th percentile and the subsequent boxes 
represent increasingly narrower quantiles calculated for half of the remaining 
data. f,g, UMAP embedding of the hit gene profiles from the HeLa DMEM (f) 
or HPLM (g) dataset. Each dot represents a genetic perturbation and distance 
implies the correlation of profiles in a two-dimensional embedding. Manual 
annotation of cluster functions are presented for highlighted clusters based on 
GO datasets. Example insets show coherent clustering of related genes. h, The 
distribution of morphological signal scores for essential and nonessential genes 
(DepMap gene effect at −0.5 threshold) for all perturbations in the HeLa DMEM 
and HPLM datasets.

Fig. 3 | PERISCOPE identifies media-specific perturbation signatures. a, 
Enrichment map for biological processes based on profile signal strength 
between the HeLa DMEM and HPLM screens. The enrichment map was generated 
using a preranked GSEA analysis with a list of all genes ordered based on the 
calculated signal strength as described in methods. The GO: Biological Processes 
(GO:BP) gene set was employed for the enrichment analysis. Some of the labels 
and single/double nodes are not shown here for clarity. LSU rRNA, large subunit 
ribosomal RNA; snRNA, small nuclear RNA. b, A schematic for the generation 
of comparative diagonally merged heat maps. c–f, The heat maps display the 
Pearson’s correlation between gene profiles from both HeLa screens and are 
hierarchically clustered using Ward’s method on a single screen, with the sister 

screen plotted in the same order: we observed gene clusters enriched in both 
screens (for example, maturation of small subunit RNA (c) and PI3K AKT mTOR 
signaling (d)), as well as gene clusters enriched only in the DMEM condition (for 
example, the iron sulfur cluster assembly (e)) or HPLM condition (for example, 
the cellular response to gamma radiation (f)). The heat maps present hit genes 
in the GO:BP maturation of the small subunit ribosomal ribonucleic acid (SSU 
rRNA) gene set (GO:0030490) (c), hit genes in the hallmark PI3K AKT mTOR 
signaling gene set (d), hit genes in the GO:BP iron sulfur cluster assembly genes 
set (GO:0016226) (e) and hit genes in the GO:BP cellular response to gamma 
radiation (GO:0071480) (f).
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were comparable to those of the HeLa screens (Extended Data Fig. 8). 
We again thresholded hits (Fig. 4a) and identified compartment hits 
from all subcellular compartments (Fig. 4b and Extended Data Fig. 4e,f) 
and, as in the HeLa screens, we found that physically interacting pro-
teins (per CORUM and STRING) were more likely to have similar mor-
phological profiles than random hit gene pairs (Fig. 4c,d).

Unbiased clustering of screen hits based on morphological simi-
larity revealed logical groupings by biological function, spanning 
processes such as glycosylation, autophagy, proteasomal protein 
catabolic processes, mRNA processing, ribosomal RNA metabolic 
process, noncoding RNA metabolic process and mitotic cell cycle 
(Fig. 4e). Hierarchical clustering based on high-dimensional profiles 
also revealed biologically coherent clustering of perturbations target-
ing related genes such as those involved in microtubule nucleation 
(Fig. 4f) and histone modification (Fig. 4g).

Although we were able to extract meaningful biology from our 
A549 dataset, we were initially surprised that it displayed noticeably 

lower overall signal than our HeLa datasets, despite similar cell cover-
age (cells per sgRNA). Further examination revealed reduced CRISPR 
efficiency in our A549 Cas9 cell line compared with HeLa (~60% versus 
~90%, as measured by indel sequencing), leading to reduced effective 
cell coverage in this screen. To further investigate the relationship 
between cell coverage and signal, we subsampled data from Funk 
et al.10, a highly sampled (>1,000 cells per sgRNA) optical pooled 
CRISPR screen and found that guide-level representation strongly 
affects profile strength29 (Extended Data Fig. 9). Despite differences in 
screening time point and phenotypic readout between this study and 
the PERISCOPE screens, this observation suggests that our screens have 
not reached signal saturation and that increasing cell coverage could 
enhance our ability to detect perturbation phenotypes.

Genome-wide screens for subcellular phenotypes of interest
High-dimensional profiles generated by PERISCOPE are composed of 
thousands of individual phenotypic features, capturing comprehensive 
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Fig. 4 | A genome-wide perturbation map in A549 cells. A summary of the 
whole-genome PERISCOPE screen performed in A549 cells. a, Hit genes identified 
in the screen include some single compartment and some impacting multiple 
compartments in the cell. Green represents hit genes called based on a subset of 
cell compartments (ER, mitochondria (mito), actin, DNA and Golgi/membrane) 
and blue represents hit genes called based on the overall profile. b, Hit genes 
called based on a single compartment are distributed across all five measured 
compartments. It is possible for a gene to be a hit in multiple compartments 
without being a whole-cell hit, see Extended Data Fig. 3a,b for more details.  
c, Distributions of optical profile correlations among all possible gene pairs 
versus correlations among gene pairs representing CORUM4.0 protein 
complexes that have at least one-third of complex subunits within hit genes.  
d, A boxen (letter-value) plot representing STRING scores divided into bins based 
on PERISCOPE profile correlation between gene pairs, n = 1,089 genes.  

The boxen plots display the data as a distribution where the center line represents 
the median, the central box represents the interquartile range from 25th to 75th 
percentile and the subsequent boxes represent increasingly narrower quantiles 
calculated for half of the remaining data. e, UMAP embedding of the hit gene 
profiles from the A549 dataset. Each dot represents a genetic perturbation and 
distance implies the correlation of profiles in a two-dimensional embedding. 
Manual annotation of cluster functions is presented for highlighted clusters 
based on GO datasets. Example insets show the coherent clustering of related 
genes. f,g, Heat maps representing Pearson correlation between gene profiles 
after hierarchical clustering using Ward’s method: gene complexes/processes 
were enriched in the A549 dataset based on the preranked GSEA analysis and 
show hit genes belonging to the GO:BP microtubule nucleation genes set 
(GO:0007020) (f) and hit genes belonging to the GO:BP histone modification 
(GO:0016570) (g).
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information about stains in each channel (for example, correlation, 
granularity, intensity, radial distribution and texture features) for iden-
tified objects (cells, cytoplasm and nuclei), with a subset also meas-
ured on a per-image basis. Additional features describe objects (area 
shape features) and their relationship to nearby objects (neighbors 
features). Having seen that full morphological profiles capture biologi-
cally meaningful patterns of similarity, we next explored whether the 
datasets could be used to conduct genome-wide screens for individual 
morphological phenotypes of interest. To explore the single-feature 
screen space, we analyzed each feature in our feature-selected datasets, 
generating a most-perturbed gene list and assessing Gene Ontology 
(GO) enrichment within that list. Features with GO enrichment were 
distributed across imaging channels for both HeLa screens (Fig. 5a), 
which is unsurprising given that each channel contributed similarly to 
our profile-based hit lists (Figs. 2b and 3b) and all canonical channels  
contribute fairly evenly to profile strength in the Cell Painting assay20. 
Features with GO enrichment were not as evenly distributed across 
feature classes (Fig. 5b). The texture class, which had the most features, 
also had the highest proportion of its features (37%: 370 out of 1,001 
features) enriched for a GO term. However, it is likely that many of 
these features are somewhat correlated since our feature selection 
step removes only the most highly correlated features. Notably, area 
shape and intensity features, which are often emphasized in other 
studies because of their biological interpretability, were less specifi-
cally enriched than less readily understandable categories such as 
texture and correlation.

To support the validity of the dataset’s single-feature screens, 
we looked at groups of genes whose protein products are known to 
function in the compartments that we labeled in PERISCOPE and deter-
mined which features had hit lists enriched for those groups. Figure 2c 
shows that perturbing these groups of genes produces signal across 
the channels, while Fig. 5c demonstrates specific enrichment in our 
hit lists for features in expected categories for protein mannosylation, 
vacuolar-type ATPase, cortical cytoskeleton and outer mitochondrial 
membrane (OMM) protein complex. Unsurprisingly, perturbation of 
DNA polymerase generated a more pleiotropic phenotype. Feature  
enrichment was similar between HeLa DMEM and HPLM screens 
(Fig. 5a–c), but the relatively reduced strength of the A549 screen 
resulted in negligible enrichment.

Each screen dataset includes 3,973 features from our adapted Cell 
Painting assay. Despite considerable redundancy, particularly among 
texture and granularity metrics, dozens of morphological phenotypes 
of interest to the biological community can now be explored and hits 
pursued, regardless of the human interpretability of the features or 
a priori hypothesis. As an example, we focused on perturbations that 
altered granularity features50 in the WGA channel. Granularity meas-
ures the signal lost with successive erosions relative to the total signal, 
such that an increase in a granularity measurement of one size must 
correspond to a decrease at another size(s). Although conceptually 
described as a way to measure the signal present within differently 
sized intracellular structures, we downsampled images before quan-
tifying erosions, making our granularity features not very human 
interpretable (visualized in Fig. 5e). The GO-enriched terms across the 
granularity features in the WGA channel present in our feature-selected 
dataset were overwhelmingly related to endocytic pathway acidifica-
tion. This inspired us to look systematically across eight granularity 
erosions measured in the WGA channel in cell objects (that is, feature 
‘Cells_Granularity_1_WGA’ and so on), where we found that disruption 
of the vacuolar ATPase (either V0 or V1 subunit) causes a decrease in 
WGA signal in the first granularity feature and concomitant increase 
in larger granularity features (Fig. 5d) for all datasets. This example 
highlights how, beyond morphological profiles, the individual features 
in our datasets can be used for hypothesis generation, though targeted 
follow-up experiments are required for biological interpretation. A pri-
mary advantage of image-based profiling over traditional microscopy 

is the quantitative and automated assessment of phenotypic features, 
overcoming the subjectivity of analyzing images by eye. Nonetheless, 
our atlas contains over 30 million individual cell images that can be 
evaluated for phenotypes of interest by a trained eye. To enhance the 
usefulness of these datasets, we developed an atlas cell retrieval tool 
(Methods), enabling the retrieval of individual images of cells contain-
ing perturbations of interest (Extended Data Fig. 10). Using this tool, 
we show that it is possible to find examples of readily interpretable 
image-based phenotypes, such as the depletion of TOMM20 signal in 
cells containing sgRNAs targeting TOMM20 (Extended Data Fig. 10e). 
However, most single-gene KO phenotypes, even those with strong 
morphological profiles, have phenotypes not readily identifiable by 
eye (Extended Data Fig. 10b–d,f), demonstrating the usefulness of 
computational feature extraction and profiling beyond simple visual 
inspection.

TMEM251/LYSET is essential for lysosomal enzyme trafficking
Having observed that genes cluster by function using morphological 
profiles, we next sought to ascertain the function of uncharacterized 
genes based on profile similarity. We focused on the poorly character-
ized gene TMEM251, which clustered with genes involved in lysosomal 
acidification in our HeLa DMEM screen. GSEA of genes ranked by simi-
larity to the TMEM251 KO profile in the HeLa DMEM dataset revealed 
enrichment for V-ATPase subunits and Golgi components, especially 
those related to glycosylation (Fig. 6a,b). On the basis of these term 
enrichments, we compared the subcellular localization of TMEM251 
relative to the Golgi and lysosomes in HT1080 cells, which were selected 
for their relative TMEM251 growth dependency36. TMEM251 local-
ized primarily to the Golgi, with negligible localization to lysosomes 
(Fig. 6c). TMEM251 KD with CRISPRi created strong phenotypes in the 
WGA channel (Fig. 6d), contributed by a striking accumulation of WGA 
fluorescence in LAMP1-positive lysosomes (Fig. 6d). This phenotype 
was seen for most of the perturbations bearing strong profile similarity 
to TMEM251 with the notable exception of SLC35A2, which was the most 
similar gene to TMEM251 at the profile level in HeLa cells, suggesting 
cell type-specific effects on glycoprotein accumulation in lysosomes 
(Fig. 6e and Supplementary Fig. 1a).

How could a Golgi-resident protein influence glycan storage in 
the lysosome? We postulated that the lysosomal WGA phenotype 
was due to impaired biogenesis of lysosomal proteins in the Golgi. 
Notably, GNPTAB/GPNTG showed strong phenotypic similarity to 
TMEM251 in PERISCOPE and human loss of function of TMEM251 results 
in a clinical presentation similar to that of human loss of function in 
GNPTAB/GNPTG51. We therefore hypothesized that TMEM251 may par-
ticipate in the mannose-6-phosphate (M6P) pathway. In this pathway, 
N-acetylglucosamine-1-phosphate transferase (encoded by GNPTAB) 
attaches a phospho-GlcNac from UDP-GlcNac onto a terminal mannose 
that ultimately forms M6P52. M6P is recognized by either of two recep-
tors, M6PR and IGF2R, and released in the lysosome in a pH-dependent 
manner. To further corroborate this hypothesis, we compared the 
phenotype of cells singly or doubly perturbed for M6PR and IGF2R. 
In double KD cells we observed a significant increase in lysosomal 
WGA accumulation, whereas single KDs were indistinguishable from 
wildtype, consistent with the primary screen (Fig. 6f and Supplemen-
tary Fig. 1b).

Owing to the strong morphological similarity between TMEM251 
and V-ATPase subunits, we examined the effect of TMEM251 KD on 
lysosomal pH using a fluorescence lifetime sensor53. Whereas treatment 
with bafilomycin A1 or ATP6V1E1 KD robustly alkalinized lysosomes, 
neither GNPTAB nor TMEM251 KD significantly changes lysosomal pH 
(Fig. 6g and Supplementary Fig. 1c). We therefore reasoned that acidic 
lysosomal pH might be required for proper trafficking and functioning 
of lysosomal enzymes downstream of TMEM251’s Golgi function and 
that the optical profile induced by V-ATPase perturbation is dominated 
by this function. We tested the activity of two lysosomal enzymes that 
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Fig. 5 | Identifying biological pathways using individual subcellular image 
features. a, GO enrichment is found in many individual features in a manner 
that is fairly evenly distributed across the cellular structures (that is, channels) 
imaged in PERISCOPE. The outer ring is the total number of features in our 
feature-selected dataset. The inner ring is the number of features that show GO 
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GO enrichment. c, Given gene groups whose protein products are expected to 

function specifically in a cellular structure imaged in PERISCOPE are specifically 
enriched in hit lists for features in those compartments. The outer ring indicates 
the channel in which enrichment is expected. The inner ring is the breakdown 
of actual channels that show enrichment for the gene group. d, Disruption of 
the vacuolar ATPase (either V0 or V1 subunit) causes a specific decrease in the 
screen feature WGA granularity 1, with compensatory increases across larger 
granularities. Each trace is a single gene. The bold lines are the mean of all genes 
in the group. Only hit genes are plotted. e, An example visualization of the signal 
measured at each granularity is shown for a single cell in the WGA channel.
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require M6PR for proper localization. Glucosyl cerebrosidase is recog
nized by SCARB2, which in turn interacts with M6PR to traffic to the 
lysosome54. TMEM251, GNPTAB, ATP6V1E1 and the M6PR/IGF2R double 
KDs all reduced glucosyl cerebrosidase activity (Fig. 6h and Supplemen-
tary Fig. 1d). Beta-galactosidase activity was even more dramatically 
impaired by these KDs (Fig. 6i and Supplementary Fig. 1e). During 
preparation of this manuscript, two independent groups reported  
the function of TMEM251 in the biogenesis of M6P and renamed  
the protein LYSET55,56. Our results independently support and  
validate a role for TMEM251 in lysosomal protein trafficking through 
the M6P-system.

Discussion
Pooled optical screens are a powerful new approach for generat-
ing high-dimensional genotype–phenotype maps with single-cell 
resolution. Our studies demonstrate that these maps can now be 
generated at scale, enabling the interrogation of genome-scale per-
turbation effects using standard laboratory equipment (a widefield 
fluorescence microscope) and scalable, distributed open source 
analysis pipelines. Notably, the cost is remarkably low per-cell pro-
file: ~US$0.001 per cell for the described HeLa datasets (including 
labor, materials and analysis, but not equipment). This combination 
of accessibility and cost effectiveness positions PERISCOPE-style 
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Fig. 6 | TMEM251 is essential for M6P-dependent trafficking of lysosomal 
enzymes. a, GSEA of genes preranked by cosine similarity to TMEM251 KO 
morphology. b, A waterfall plot of the distribution of cosine similarities to 
TMEM251 morphology. Representative genes involved in glycosylation, 
trafficking and lysosomal acidification are highlighted. c, TMEM251 localization 
was examined in cells expressing fluorescent reporter of either GALNT2 
(Golgi) or TMEM192 (lysosome) and stained for TMEM251. d, WGA and LAMP1 
costaining of cells with KD of genes indicated. See Supplementary Fig. 1 for other 
perturbations. e,f, Quantification of lysosomal WGA staining after CRISPRi KD 
of TMEM251, SLC35A2, UNGP2, GNPTAB, WDR7, VPS11, ATP6V1G1, ATP6AP1, 
ATP6V1E1 (e) and IGF2R and M6PR (f). Plotted are the upper quartiles of median 
per-cell lysosomal WGA intensity in two biological replicates. g, A box plot of 

LAMP1–mScarlet fluorescence lifetimes, which correlates with lysosomal pH, 
for the indicated perturbations. Each point represents the median lifetime of 
lysosomal fluorescence in an image (n = 30 for GNPTAB and TMEM251; n = 15 
for the remaining conditions; boxes and mid-lines indicate Q1, Q2 and Q3, with 
whiskers marking the data points closest to and within 1.5× (Q3–Q1)). h,i, Log10 
fold-changes of glucosylceramidase and beta-galactosidase activity relative to 
nontargeting controls for the indicated CRISPRi KDs. Each point represents the 
per-cell total MFI in two biological replicates. The colocalization experiment in 
c was performed once, with ~150 cells imaged over 20 fields per condition. The 
confocal images in d are representative of two biological replicates. Statistical 
analysis: two-tailed t-test versus nontargeting for e–i. βGal, beta-galactosidase; 
LFC, log fold-change; NES, normalized enrichment score.
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screens as a democratizing platform technology for linking genotypes 
to cellular programs.

In addition to being practical, PERISCOPE generates rich, data- 
driven representations of gene function. A central goal of massively 
parallel genetic screens is to understand how genes coordinate to 
produce complex cell phenotypes and, in this regard, PERISCOPE is 
valuable both as a profiling technology—generating high-dimensional 
representations of a cell state—and as highly parallelized screens of 
subcellular biological parameters (for example, cell size and organelle 
size, shape and number). We showcase the ability to reconstruct rela-
tionships between genes in biological pathways and proteins in com-
plexes using whole-cell optical profiles. Furthermore, we demonstrate 
the potential to gain mechanistic insights into gene function through 
spatially restricted subcellular phenotypes (TMEM251) and the clas-
sification of genes by function (V-ATPase assembly) using individual 
morphological features.

Massively parallel CRISPR modifier screens have been proven 
to be very useful for mapping gene-by-environment interactions at 
scale. By enabling facile, cost-effective genome-scale screening with 
high-dimensional cell profiling, we demonstrate that genetic pertur-
bations can be readily combined with environmental perturbations 
to produce rich, high-resolution maps to systematically interrogate 
gene-by-environment interactions at genome scale. As an example, 
we show how such maps can uncover media-specific effects on cellular 
programs, but we additionally envision using this platform to execute 
genome-wide screens for modifiers of therapeutic compound-induced 
phenotypes, or to carry out genetically anchored CRISPR screens57 to 
elucidate genetic interaction networks.

Limitations, improvements and future applications
Now that the PERISCOPE technique is established, much can be done 
to further optimize the workflow such that it is a routine assay. The 
current labor required is strongly correlated with the number of plates 
processed. The enzymatic, staining and imaging steps take around 
4 weeks for two scientists with access to two microscopes to complete 
a nine-plate A549 whole-genome screen. Image analysis and profile 
generation require at least another 2 weeks with existing paralleliza-
tion. The number of plates is affected by cell size (for example, an A549 
screen required roughly twice the number of plates as an HeLa screen) 
and target cell coverage (a higher representation improves the signal 
to noise ratio to enable detection of more subtle perturbations, and 
lower Cas9 efficiency requires higher representation). Automation of 
both wet laboratory and computational workflows has the potential 
for a profound impact on throughput. If experimental modifications 
that reduce throughput are required, such as higher magnification for 
imaging phenotypes, we suggest a compensatory modification such as 
focusing only on expressed genes or using vector systems that reduce 
the number of guides required.

In addition to improving cell coverage, the signal in PERISCOPE 
screens can be further improved by refining the background distri-
bution through careful curation of negative control perturbations. 
Here, we use nontargeting sgRNAs to identify gene-targeting sgRNAs 
that produce significant morphological signal (a standard practice in 
CRISPR screening2), and then take the further step of using all sgRNAs 
targeting nonexpressed genes (Zero-TPM in the DepMap database) to 
apply stringent FDR correction to our hit list. While this conservative 
approach attempts to reduce the signal from a wide range of nonspe-
cific morphological effects associated with CRISPR cutting (as opposed 
to gene-specific KO effects), it relies on the accuracy of underlying 
expression data. As we observe, genes with very low expression can 
still produce morphological phenotypes when perturbed and, addi-
tionally, fitness effects can be induced by gene-independent activity 
of sgRNAs targeting amplified genes58, dampening the screen signal. 
The use of a curated set of intergenic cutting sgRNAs could mitigate 
this effect while still reducing nonspecific signal from CRISPR activity. 

On a related note, though we have applied a strict 1% FDR threshold 
to our data, we encourage users of these open source data to apply 
their own judgment when selecting a FDR to balance the ratio of false 
positives/negatives based on their specific applications (for example, 
discovery versus validation).

Beyond the current scope, there are several improvements that 
could be built upon the foundation of the work presented here. In its 
current form, the PERISCOPE platform could be deployed to explore 
the effects of other CRISPR-based perturbations such as CRISPR-a59,60, 
CRISPR-i61,62 or base editing63–65, where sgRNAs can be expressed as 
an RNA Pol II transcript (as in CROP-seq). In this study, we profile two 
cancer cell lines, HeLa and A549, but our pipelines are amenable to 
screening a wide variety of two-dimensional cell models, including 
cell lines and primary cells, though assay scale and data quality are cell 
density dependent. Our screens demonstrate that significant signal is 
present in every measured cell compartment, and highly multiplexed 
imaging technologies such as CODEX66 and CyCIF67 could improve the 
sensitivity and robustness of PERISCOPE by capturing a wider range of 
perturbation effects or enabling the inclusion of ground truth epitopes 
to anchor biological interpretation. Extracting biological signals from 
fluorescence multicolor images is a compelling machine learning 
problem, which will probably be improved using various forms of 
deep learning, such as self-supervised learning, to extract features68. 
Though such features lack inherent interpretability, which is important 
for some applications, they have proven to be more powerful than 
engineered features for capturing similarities in some cases69,70.

Though we are able to extract meaningful biology from our  
datasets, it is clear that our current cell coverage somewhat limits 
the biology that can be extracted from our proof-of-principle data-
sets and that increased cell sampling should be considered for future 
PERISCOPE screens, including improvements to the computational 
workflow such that improved barcode calls71 and cell assignments 
result in fewer cells being filtered out. That being said, beyond the 
biological validation we report here, new methods for quantifying 
signal in large-scale screens validate that we have clear signal in our 
HeLa datasets72 and that they can outperform many other datasets as 
sources of prior information for predicting the outcome of Perturb-seq 
experiments73, supporting the utility of this resource.

In sum, this study lays the groundwork for building high- 
dimensional morphology-based perturbation maps at scale and pre-
sents the first genome-scale atlas of human cell morphology. Contain-
ing more than 30 million perturbation-assigned cell images, this atlas 
is a useful resource for biological interrogation as well as for the devel-
opment and testing of new computational image analysis methods. 
All data and analysis tools are open source and freely available (Code 
availability and Data availability).

Online content
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Methods
Library design
The whole-genome library was designed to target 20,393 genes with 
~4 sgRNAs per gene for a total of 80,408 sgRNAs. Guides were selected 
from a larger set (20 sgRNAs per gene) that was computationally 
designed by the Broad Institute’s Genetic Perturbation Platform to opti-
mize predicted editing efficiency while ensuring that individual guides 
were distinguishable by at least 2 bases in their first 12 nucleotides 
(to facilitate error detection during ISS). Among the 80,408 sgRNAs, 
47,792 sgRNAs are present in the Brunello CRISPR library (Addgene, 
73179) and 20,520 sgRNAs are in the TKO V3 CRISPR library (Addgene, 
90294). Additionally, 601 nontargeting sgRNAs were included as nega-
tive controls. All sgRNA sequences were selected/designed to main-
tain a balanced nucleotide distribution at each base position, which 
facilitates optical barcode calling. The CRISPR library was designed 
for complete library deconvolution with 11 bases and for Levenshtein 
error correction with 12 bases.

Library cloning
To prepare pooled plasmid libraries, targeting and nontargeting guide 
subpools were first individually amplified by dial-out PCR using ortho
gonal primer pairs.74. PCR products were purified using the QIAquick 
PCR purification kit (Qiagen, 28104). The amplified libraries were 
cloned into the CROP-seq vector (Addgene, 86708) via Golden Gate 
assembly using BsmBI restriction sites as previously described13. To pre-
vent self ligation events in Golden Gate reactions, the CROP-seq vector 
was predigested and purified via gel extraction using the QIAquick gel 
extraction kit (Qiagen, 28706) to remove the filler sequence. The result-
ing plasmid libraries were purified and concentrated via solid-phase 
reversible immobilization bead cleanup before being transformed into 
electrocompetent cells (Lucigen Endura, VWR International, 71003-
038) for plasmid library amplification. Following transformation, 
bacterial cells were grown in liquid cultures for 18 h at 30 °C before 
extracting the plasmid DNA. The plasmid library was validated via NGS 
as described in NGS.

Tissue culture
A549 cells were cultured in high-glucose DMEM (VWR International, 
45000-304) supplemented with 2 mM l-glutamine (Life Technologies, 
25030081), 100 U ml−1 penicillin–streptomycin (Life Technologies,  
15140163) and 10% heat-inactivated fetal bovine serum (FBS) 
(Sigma-Aldrich, F4135-500ML). HEK293FT cells were cultured in 
DMEM–GlutaMax, pyruvate (Thermo Fisher Scientific, 10569010) 
supplemented with 10% heat-inactivated FBS and 100 U ml−1 penicillin– 
streptomycin and 2 mM l-glutamine. HEK293FT cells were also cultured 
without antibiotics 24 h before lentiviral packaging. HeLa cells in the 
conventional media screen were cultured in DMEM (VWR International, 
45000-304) supplemented with 10% dialyzed FBS (Thermo Fisher  
Scientific, 26400044). HeLa cells in the physiological media screen 
were cultured in HPLM (Thermo Fisher Scientific, A4899101) supple-
mented with 10% dialyzed FBS.

Lentivirus production
Before lentivirus production, the plasmid pools for targeting and non-
targeting sgRNAs were combined resulting in a 10% (mass/mass ratio, 
m/m) of nontargeting sgRNAs and a 90% (m/m) of targeting sgRNAs. At 
24 h before transfection, HEK293FT cells were seeded on 10 cm2 dishes 
at a density of 100,000 cells cm−2 using antibiotic-free medium. The 
lentivirus was generated using the Lipofectamine 3000 (Thermo Fisher 
Scientific, L3000015) transfection kit and packaging plasmids pMD2.G 
(Addgene, 12259) and psPAX2 (Addgene, 12260). HEK293FT cells were 
transfected with a plasmid ratio of 2:3:4 (by mass) of pMD2G, psPAX2 
and plasmid library, respectively. Media were exchanged 4 h after trans-
fection. The lentivirus was collected 48 h after media exchange and 
filtered through a 0.45 µm cellulose acetate filter (Corning, 431220). 

The viral supernatant was incubated in dry ice until frozen and stored 
at −80 °C.

Lentivirus titering
A viral titer was individually determined for A549 and HeLa cells. A549 
cells were seeded at a density of 100,000 cells cm−2 while HeLa cells 
were seeded at a density of 150,000 cells cm−2 in a 6-well format. The 
seeded cells were transduced with the viral library by supplementing 
their media with 8 μg ml−1 of polybrene (Sigma-Aldrich, TR-1003) and 
adding a variety of viral volumes ranging from 0 μl to 50 μl before 
centrifugation at 1,000g for 2 h at 33 °C. After centrifugation, the 
cells were incubated at 37 °C for 4 h followed by a media exchange. At 
24 h post-infection, cells were divided into media containing either 
0 μg ml−1 or 2 μg ml−1 of puromycin (Life Technologies, A1113803). Cells 
in both media conditions were incubated at 37 °C for 72 h. Following 
incubation, cells were counted and multiplicity of infection (MOI) was 
estimated by the ratio of surviving cells in the 2 μg ml−1 puromycin con-
ditions over puromycin free conditions. Infectious units per microliter 
(ifu μl−1) were then calculated by multiplying the MOI by the original cell 
seeding density and dividing by the viral volume added. The values of 
ifu μl−1 for each viral volume were averaged and used to estimate viral 
volume required to achieve an MOI between 0.1 and 0.3.

Lentivirus transduction
For screens, cells were transduced with the genome-wide viral library 
in a 6-well format by adding 8 μg ml−1 of polybrene and the volume of 
viral supernatant calculated for an MOI of 0.2 as well as a noninfec-
tion control with 0 μl of viral supernatant. Cells were centrifuged at 
1,000g for 2 h at 33 °C. At 4 h post-infection, media were exchanged. At 
24 h post-infection, the infected cells were passaged into T-225 flasks 
(VWR International, 47743-882) containing media supplemented with 
2 μg ml−1 puromycin. A fixed number of cells (~300,000) for the infec-
tion and uninfected conditions were set aside and seeded in a 6-well 
plate format under media containing either 0 μg ml−1 or 2 μg ml−1 of 
puromycin. All cells were incubated at 37 °C for 72 h. Following the 72 h 
of selection, the cells seeded in the 6-well plate were counted and the 
MOI was calculated as described above.

A549 screen
A549-TetR-Cas9 cells were transduced with the genome-wide viral 
library in three biological replicates by seeding cells at a density of 
150,000 cells cm−2 in a 6-well format and performing lentiviral trans-
duction as described above. A total of 240,000,000 cells were trans-
duced at an MOI of 0.2 for a cell library representation of 300 cells per 
sgRNA post transduction. After antibiotic selection, the cells were 
cultured in conventional DMEM media for 2 days. Before induction of 
Cas9 expression, a sample of 25,000,000 cells per biological replicate 
were lysed and prepared for NGS as described below. These samples 
were used to confirm the target representation. Cas9 expression was 
induced with 2 μg ml−1 doxycycline spiked in conventional DMEM 
medium. Throughout Cas9 expression, cells were cultured in T-225 
flasks and passaged once the flasks reached 70% confluency. Between 
passages, a minimum of 24,000,000 cells were re-seeded per biological 
replicate thus maintaining a representation of 300 cells per sgRNA. The 
cells were supplemented with 2 μg ml−1 of doxycycline every 2 days by 
exchanging the culturing media. On day 5 of Cas9 expression, the cells 
were seeded into nine 6-well glass-bottom plates (Cellvis, P06-1.5H-N) 
at a density of 19,800 cells cm−2. A total of 13,000,000 cells across the 
three biological replicates were seeded in optical plates with the expec-
tation that cell populations will double at least once before fixation. 
The remainder of the cells were kept in T-225 flasks and cultured until 
day 7 of Cas9 expression where a sample of 13,500,000 cells from each 
biological replicate were lysed and prepared for NGS analysis. At 48 h 
after being seeded in optical plates, the cells were fixed with 4% para-
formaldehyde in 1× PBS for 30 min, followed by ISS as described below.  
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After rolling circle amplification (RCA) in ISS, the cells were stained 
with cell compartment-specific probes as described in ‘Phenotypic 
labeling’ and phenotypic images were acquired. The disulfide-linked 
probes were destained by cleaving the disulfide bridge between  
the probe and its fluorophore with 50 mM TCEP (Thermo Fisher  
Scientific, 363830100) in 2× saline–sodium citrate (SSC) for 45 min at 
room temperature.

After destaining phenotypic probes, the cells are washed three 
times with 1× PBS-T (1× PBS + 0.05% Tween-20) before performing 12 
cycles of ISS.

HeLa screens
HeLa-TetR-Cas9 were transduced with the genome-wide viral 
library in three biological replicates by seeding cells at a density of 
210,000 cells cm−2 in a 6-well format and performing lentiviral trans-
duction as described above. A total of 240,000,000 cells were trans-
duced at an MOI of 0.2 for a cell library representation of 300 cells per 
sgRNA post transduction. After antibiotic selection, the transduced 
cells were cultured in conventional DMEM medium until a represen-
tation of 600 cells per sgRNA was achieved. To confirm the target 
representation, a sample of 20,000,000 cells from each biological 
replicate were lysed and prepared for NGS as described below. The 
cell library was then divided into two culturing conditions, conven-
tional DMEM and physiological HPLM media (media formulations are 
described above). Simultaneous to the addition of these two media 
conditions, Cas9 expression was induced with 2 μg ml−1 doxycycline 
(Sigma-Aldrich, D5207) for 7 days. Throughout Cas9 expression, cells 
for each condition were cultured in T-225 flasks and passaged once 
the flasks reached 70% confluency. Between passages, a minimum of 
24,000,000 cells were re-seeded per biological replicate thus main-
taining a representation of 300 cells per sgRNA for each media condi-
tion. The cells were supplemented with 2 μg ml−1 of doxycycline every 
2 days by exchanging the culturing media. On day 5 of Cas9 expres-
sion, the cell libraries under both media conditions were seeded into 
five 6-well glass-bottom plates (Cellvis, P06-1.5H-N) at a density of 
42,000 cells cm−2. A total of 14,000,000 cells across the three biologi-
cal replicates were seeded in optical plates for each media condition 
with the expectation that cell populations will double at least once 
before fixation. The remainder of the cells were kept in T-225 flasks and 
cultured until day 7 of Cas9 expression, where a sample of 20,000,000 
cells from each biological replicate was lysed and prepared for NGS 
analysis. At 48 h after being seeded in optical plates, the cells were 
fixed with 4% paraformaldehyde in 1× PBS for 30 min, followed by ISS as 
described below. After RCA amplification in ISS, the cells were stained 
with cell compartment-specific probes as described in ‘Phenotypic 
labeling’ and phenotypic images were acquired. The disulfide-linked 
phenotypic probes were destained by cleaving the disulfide bridge 
between the probe and its fluorophore with 50 mM TCEP (Thermo 
Fisher Scientific, 363830100) in 2× SSC for 45 min at room temperature. 
After probe destaining, the cells are washed three times with 1× PBS-T 
(1× PBS + 0.05% Tween-20) before performing 12 cycles of ISS.

Synthesis of destainable phenotyping probes
Due to the spectral overlap between the fluorescent dNTPs required 
for ISS and the available fluorophores for phenotypic markers, the 
probes used to label the mitochondria and the ER were synthesized 
in-house to include a disulfide bridge between the probe and its fluo-
rophore that will allow for cleavage of the fluorophore after imaging. 
For mitochondria labeling, the secondary anti-TOMM20 antibody, 
F(ab’)2-goat-anti-rabbit IgG (H + L) (Thermo Fisher, 31239) was con-
jugated to Alexa Fluor 594-azide (Thermo Fisher, A10270). For ER 
labeling, the protein ConA (Sigma-Aldrich, C2010) was conjugated to 
cyanine 5-azide (Lumiprobe, B3030). In the synthesis of these probes, 
we leveraged the thermal stability and high specificity of the click chem-
istry reaction between dibenzocyclooctyne (DBCO) and azide groups. 

Hence, the anti-TOMM20 antibody and the ConA protein were function-
alized for click chemistry with the addition of an NHS-SS-DBCO mole
cule (Sigma-Aldrich, 761532) that subsequently reacted with the azide 
groups linked to their respective fluorophores. Before functionalizing 
the probes, the anti-TOMM20 antibody and ConA protein were diluted 
to 1.1 mg ml−1 and 2 mg ml−1 in freshly prepared 0.1 M sodium phosphate 
solutions at pH 8.5 and 6.8, respectively. The DBCO was freshly dis-
solved to 10 mg ml−1 in anhydrous dimethylsulfoxide (Sigma-Aldrich, 
227056). The diluted proteins and DBCO were combined at the follow-
ing molar rations (8 anti-TOMM20:1 DBCO and 3 ConA:1 DBCO) and 
then incubated for 2 h at 4 °C while shaking. Following incubation, 
the reaction was quenched with 2 M Tris–HCl (pH 7.4) at a 10% reac-
tion volume. The resulting product was purified using Zeba columns 
(Thermo Fisher, 89883). Product retention after column purification 
was ~90%. The azide-linked fluorophores were diluted to 10 mg ml−1 
in anhydrous dimethylsulfoxide and reacted with their respective 
functionalized probes at a 3:1 molar ratio. This reaction proceeded 
for 20 h at 4 °C while shaking; reaction vials were protected from light 
during this incubation. The final product was purified by running each 
reaction through three Zeba columns to do a final buffer exchange into 
1× PBS. After synthesis the destainable probes were stored at −20 °C.

ISS
The ISS of sgRNAs required three enzymatic steps, a targeted reverse 
transcription (RT) of the sgRNA, the formation of a circular DNA 
template (gap-fill and ligation) and the amplification of that tem-
plate through RCA. Before the enzymatic reactions, cells were fixed 
with 4% paraformaldehyde (Electron Microscopy Sciences, 15714) 
in 1× PBS for 30 min at room temperature and then permeabilized 
with 70% ethanol (VWR International, 76212-358) for 30 min at room 
temperature. To prevent sample dehydration after permeabiliza-
tion, the ethanol was removed over six serial dilutions with PBS-T (1× 
PBS + 0.05% Tween-20). After permeabilization, the RT solution was 
prepared and applied to the cells according to the following formu-
lation of 1× RevertAid RT buffer (Thermo Fisher, EP0452), 250 μM 
dNTPs (NEB, N0447L), 0.2 mg ml−1 BSA (NEB, B9000S), 1 μM RT primer 
(G + AC + TA + GC + CT + TA + TT + TTAACTTGCTAT), 0.8 U μl−1 Ribolock 
RNase inhibitor (Thermo Fisher, EO0382) and 4.8 U μl−1 RevertAid H 
minus reverse transcriptase (Thermo Fisher, EP0452). Cells in the RT 
solution were incubated at 37 °C overnight.

Following RT, the cells were washed five times with PBS-T and 
post-fixed with 3% paraformaldehyde and 0.1% glutaraldehyde  
(Electron Microscopy Sciences, 16120) in 1× PBS for 30 min at room 
temperature. After post-fixation, the cells were washed three times 
with PBS-T. The gap-fill and ligation solution was prepared and added to 
the cell according to the following formulation of 1× Ampligase buffer 
(Lucigen, A3210K), 50 nM dNTPs (NEB, N0447L), 0.2 mg ml−1 BSA (NEB 
B9000S), 10 nM padlock probe (/5Phos/ GTTTTAGAGCTAGAAATAGCA 
AGCTCCTGTTCGACACCTACCCACCTCATCCCACTCTTCAAAAGGAC-
GAAACACCG), 0.4 U μl−1 RNase H (Qiagen, Y9220L), 0.002 U μl−1 TaqIT 
polymerase (Qiagen, P7620L) and 0.5 U μl−1 Ampligase (Lucigen, 
A1905B).

After gap-fill and ligation, the cells were washed three times with 
PBS-T. The RCA solution was then prepared according to the following 
formulation of 1× Phi29 buffer (Thermo Fisher, EP0094), 250 μM dNTPs 
(NEB, N0447L), 0.2 mg ml−1 BSA (NEB B9000S), 5% glycerol and 1 U μl−1 
Phi29 DNA polymerase (Thermo Fisher, EP0094). The cells in the RCA 
solution were incubated at 30 °C overnight. Following incubation, the 
cells were washed three times with PBS-T.

Phenotypic labeling
After RCA, the cells were prepared for phenotypic labeling by incu-
bating them with a blocking buffer containing 1% BSA (Seracare Life 
Sciences, 1900-0016) in 1× PBS for 10 min at room temperature. After 
blocking, a primary staining solution containing rabbit anti-TOMM20 
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antibody (Abcam, ab78547), Alexa Fluor 488 Phalloidin (Thermo Fisher, 
A12379), ConA-SS-A647 and WGA-A750 (WGA protein by Vector Labs, 
L-1020-20, custom conjugation to A750 fluorophore by Arvys Proteins) 
was prepared in 1× PBS and applied to the cells for 45 min at room 
temperature. Following incubation with the primary staining solution, 
the cells were washed three times with 1× PBS-T and a secondary stain-
ing solution containing F(ab′)2-goat-anti-rabbit IgG (H + L)-SS-A594 
was prepared in blocking buffer and applied to the cells for 30 min at  
room temperature. The phenotypic probes for the primary and  
secondary staining solutions were diluted according to the dilution 
factors listed in Supplementary Table 4. Dilution factors for each 
probe were determined before screening by doing a serial titration of  
individual stains.

After incubation with the secondary staining solution, the cells 
were washed with 1× PBS-T three times allowing the plate to sit at room 
temperature for 5 min between washes. Finally, the cells were placed 
in a freshly prepared DAPI staining solution containing 200 ng ml−1 
DAPI (Sigma-Aldrich, D9542-10MG) diluted in 2× SSC. The cells were 
incubated in the DAPI staining solution for 10 min at room temperature 
before imaging.

Sequencing by synthesis
After destaining the phenotypic probes, the cells were incubated with 
a sequencing primer (CACCTCATCCCACTCTTCAAAAGGACGAAACA 
CCG) at 1 μM concentration in 2× SSC with 10% formamide for 30 min 
at room temperature. Following this primer hybridization, the cells 
were washed three times with PR2 buffer (Nano kit PR2) and then incu-
bated with incorporation mix (Nano kit reagent 1) for 5 min at 60 °C. 
The incorporation mix was then removed over six serial dilutions 
with PR2 buffer. To decrease background fluorescence, the cells were 
washed with fresh PR2 buffer and incubated at 60 °C for 5 min. The 
washing process was repeated five times before adding 200 ng ml−1 
DAPI (Sigma-Aldrich, D9542-10MG) in 2× SSC and imaging.

Fluorescence microscopy
Phenotypic and ISS images were acquired using a Nikon Ti-2 Eclipse 
inverted epifluorescence microscope with automated XYZ stage con-
trol, an Iris 9 scientific complementary metal–oxide–semiconductor 
(sCMOS) camera (Teledyne Photometrics) and hardware autofocus. All 
hardware was controlled using NIS-Elements AR, and a CELESTA light 
engine (Lumencor) was used for fluorescence illumination. Pheno-
typic images were acquired using a 20× 0.75 numerical aperture (NA) 
chrome-free infinity corrected (CFI) Plan Apo Lambda objective (Nikon, 
MRD00205) and the following Semrock filters for each phenotypic 
probe: actin (phalloidin) emission ET530/30 nm, dichroic 495 nm; 
mitochondria (TOMM20) emission 615/24 nm, dichroic 565 nm; ER 
(ConA) emission 680/42 nm, dichroic 660 nm; Golgi and plasma mem-
brane (WGA) emission 820/110 nm, dichroic 765 nm; nucleus (DAPI) 
dual-band emission 408/473, dichroic 408/473 nm. ISS cycles were 
imaged using a 10× 0.45 NA CFl Plan Apo Lambda objective (Nikon) 
with the following Semrock filters for each base: Miseq G excitation 
543/4 nm, emission 575/30 nm, dichroic 555 nm; Miseq T emission 
615/24 nm, dichroic 565 nm; Miseq A emission 680/42 nm, dichroic 
660 nm; Miseq C emission 732/68 nm, dichroic 660. Laser power for 
all acquisitions was kept at 30%. The exposure times for ISS cycles were 
selected by balancing the average pixel intensities of ISS spots in each 
fluorescent channel.

NGS
NGS was used for validation of plasmid libraries, cell libraries and Cas9 
activity in screening cell lines. For Cas9 activity assays and cell library 
validation, cell samples were lysed by resuspending cell pellets in lysis 
buffer (10 mM Tris pH 7.5, 1 mM CaCl2, 3 mM MgCl2, 1 mM EDTA, 1% 
Triton-X100 and 0.2 mg ml−1 Proteinase K) and heating for 10 min at 
65 °C followed by 15 min at 95 °C. The target sequences in cell lysates 

were directly amplified without cell lysis purification according to the 
following PCR reactions: PCR 1: 1× Kappa HiFi, 0.15 µM CROP-seq-puro 
P5 (CTGGAGTTCAGACGTGTGCTCTTCCGATCaagcaccgactcggtgccac), 
0.15 µM CROP-seq-puro P7 (ACACGACGCTCTTCCGATCTtcttgtggaaa-
ggacgaaac), 2 ng µl−1 gDNA from cell lysate, 28 PCR cycles. PCR 2: 1× 
Kappa HiFi, 0.25 µM P5 Truseq Indexing Primer FWD, 0.25 µM P7 Truseq 
Indexing Primer RVD, 4 ng µl−1 PCR 1 product, 18 PCR cycles. Tempera-
ture conditions for PCR reactions followed initial denaturation at 95 °C 
for 5 min, then denaturation at 95 °C for 20 s, annealing at 55 °C for 30 s 
and extension at 72 °C for 30 s. PCR 2 products were purified via gel 
extraction using the Qiaquick gel extraction kit (Qiagen, 28706×4) and 
prepared for sequencing as described in Illumina’s library denatura-
tion and dilution manual. The PhiX Control library was spiked in the 
sequencing sample at 10% (v/v) (Illumina, FC-110-3001).

Cell lines
The A549-TetR-Cas9 cell line75 was created by simultaneously trans-
fecting A549 cells with piggyBac transposase (HP137) and a piggyBac 
cargo plasmid containing TetR-inducible Cas9 (Addgene, 134247), and 
selecting for 7 days with 500 µg ml−1 G418. Single cells were sorted into 
96-well plates (Sony, SH800) and expanded into colonies. An optimal 
clone was selected on the basis of Cas9 activity, aiming for high and low 
activity in the presence and absence of doxycycline, respectively. Cas9 
activity was evaluated using the fluorescence based reporter pXPR011 
(Addgene, 59702), which expressed GFP and cognate sgRNA to assess 
GFP KD upon successful CRISPR activity. Fluorescence readouts of Cas9 
activity were detected via fluorescence-activated cell sorting and indel 
sequencing. The A549 parental cells were obtained from the American 
Type Culture Collection (CCL-185). The HEK293FT cells used for viral 
packaging were obtained from Thermo Fisher Scientific (R70007). 
The HeLa-TetR-Cas9 cell line was a gift from Iain Cheeseman; this  
cell line is a single-cell clone selected for high Cas9 activity by  
transducing with the eGFP reporter mentioned above (pXPR011)  
and using fluorescence-activated cell sorting to read out efficiency 
of protein KD.

Image processing
We used CellProfiler bioimage analysis software (version 4.1.3)27 to 
process the images using classical algorithms and Fiji (with openjdk-8)76 
for image stitching77 and cropping. For the ISS images, we corrected 
for variations in background intensity, aligned channels within cycles 
and performed channel compensation. For the phenotypic images, 
we corrected for variations in background intensity. We then stitched 
the ISS and Cell Painting images independently into a full-well view 
and cropped them into corresponding pseudo-sites to account for 
the fact that they were imaged at different magnifications. Corrected, 
pseudo-site images from both ISS and phenotypic images entered our 
final analysis pipeline where they were aligned to each other, conflu-
ent regions (if present) were detected and masked out, nuclei and 
cells were segmented using phenotypic images, ISS foci were identi-
fied and a barcode was called for each focus. Then, across the various 
channels captured, we measured various features of cells across sev-
eral categories including fluorescence intensity, texture, granularity, 
density and location (see http://cellprofiler-manual.s3.amazonaws.
com/CellProfiler-4.1.3/index.html for more details). We obtained 3,973 
feature measurements from each of about 26.8 million (A549) and 46.4 
million (HeLa) cells. We parallelized our image processing workflow 
using Distributed-CellProfiler78 and Distributed-FIJI79, triggered by 
Lambda Functions in Amazon Web Services. The actual CellProfiler 
pipelines used are available in the Cell Painting Gallery80 (Code avail-
ability and Data availability) while continuously improved pipelines 
and Lambda Function scripts are available at https://github.com/
broadinstitute/pooled-cell-painting-image-processing. Object seg-
mentation parameters are likely to need tuning by an image analysis 
expert between datasets but feature extraction is invariant.
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Image-based profiling
We processed outputs of CellProfiler into image-based profiles using 
scripts available at https://github.com/broadinstitute/pooled-cell- 
painting-profiling-recipe. This is highly configurable beyond the con-
figurations used for this report. The first step generates summaries of a 
variety of quality control metrics about the image acquisition, modified 
Cell Painting and ISS. The second step uses Pycytominer workflows to 
process the single-cell features extracted using Cell Profiler. We median 
aggregated the single-cell profiles by guide for each plate indepen-
dently. Next, we defined the center and scale parameters as the mean 
and standard deviation of feature values by the standardized method 
in Pycytominer, and then normalized the averaged profiles by subtract-
ing the center value and scaling to the standard deviation for each 
plate independently. We further processed the per-plate guide-level 
profiles to create the per-screen profiles we use in our analyses. We 
performed feature selection independently for each screen to eliminate 
noisy features and retain the most informative features by filtering out 
redundant features (all features that have Pearson correlation greater 
than 0.9 to a given feature), features with low variance, and features 
with missing values across all the plates as is standard in image based 
profiling workflows37. Then we median aggregated each experiment’s 
feature-selected per-plate profiles to obtain a unique profile per guide 
for each experiment. For perturbation-level (gene-level) profiles, each 
experiment’s guide-level profiles were median aggregated.

Each dataset is independently welded to the recipe, effectively 
versioning the recipe, using a template, available at https://github.
com/broadinstitute/pooled-cell-painting-profiling-template. Our 
A549 screen data with versioned recipe are available at https://github.
com/broadinstitute/CP186-A549-WG. Our HeLa screens data with 
versioned recipe are available at https://github.com/broadinstitute/
CP257-HeLa-WG. Code used for further profile processing is in this paper 
repository at https://github.com/broadinstitute/2022_PERISCOPE.

Hit calling, statistical analysis and distribution of hits
To determine the genes with significant signal above the noise  
(hit calling) we developed an algorithm to compare the distribution 
of values per feature for all the guides targeting the same gene with a 
set of nontargeting control guides using the Mann–Whitney U-test. 
The number of features significantly different from the nontargeting 
controls based on the statistical test (P value of 0.001) were added up to 
calculate profile score for each perturbation. Then, to ensure that the 
perturbations called significant are truly not null, we defined a control 
group called zero-transcript per million (TPM) genes. Zero-TPM genes 
are the genes without significant expression in a given cell line and were 
determined based on the RNA expression levels reported by the Broad 
Institute Dependency Map portal36. To obtain a FDR of 1%, perturbations 
with profile scores above 99% of zero-TPM genes were determined to 
have significant signal above the noise. The terms ‘whole-cell hits’ and 
‘compartment hits’ were used to distinguish between perturbations with 
significant signal in overall profile features or perturbations with tar-
geted signal in features from a specific cell compartment (based on one 
of the five fluorescent markers). For whole-cell hits, all of the collected 
features were used in the hit-calling process explained above, but for the 
compartment hits, a subset of features from one cell compartment were 
used (including texture, intensity, correlation, radial distribution and 
granularity measures from that compartment). The hit-calling pipeline 
described above was also utilized at FDR levels 2%, 3%, 4% and 5% to high-
light the number of identified hits at different stringency levels (Extended 
Data Fig. 3a). It is important to note that a single perturbation can be a 
compartment hit, targeting simultaneously two, or rarely even three, 
compartments, but still not be a whole-cell hit (Extended Data Fig. 4a,c,e).

mAP calculations
Mean average precision (mAP) was used to evaluate the similarity 
between phenotypic profiles between guides targeting the same gene. 

mAP is a commonly used performance metric in machine learning, 
specifically for information retrieval tasks and it has been shown to be 
a valuable tool in validation of large-scale, high-throughout biological 
profiling data.29 From a group of N control profiles and a group of M 
query profiles (M = 4 for each guide targeting the same gene), for each 
query profile we calculate noninterpolated average precision (AP) by 
following these steps:

	 (1)	 Select a single profile i from M query profiles.
	 (2)	 Calculate similarity of the profile i to all other (M − 1) + N  

profiles; we have used cosine similarity as the metric.
	 (3)	 Sort (M − 1) + N profiles by decreasing similarity to the profile i.
	 (4)	 At each rank k going down the list, if k is a correct match, calcu-

late the precision at rank k for this rank.
	 (5)	 AP can be be calculated via relative change in recall using the 

following formula:

APi =
(M−1)+N
∑
k=1

(Rk−1 − Rk)Pk,

in which Pk  is precision and TPk is true positive at rank k,

Pk =
TPk
k

and Rk  is recall at rank k,

Rk =
TPk
M − 1 .

Finally the mAP for the whole query group can be calculated by

mAP = 1
M

M
∑
i=1

APi.

More details and the code used to calculate mAP is available on the 
GitHub repository.

Distribution of significant features based on gene sets 
targeting each compartment
Pie charts showing the normalized fraction of number of features 
significantly different from the control, categorized based on target 
compartments (Fig. 2c). The values are the average from multiple genes 
part of the highlighted gene groups.

Comparison between pairwise correlation of perturbations to 
other databases
To assess the ability of phenotypic profiles to recall known biological  
relationships, we calculated the correlation between profiles as a 
measure of similarity and used it to perform two global assessments. 
Considering the large number of features in each profile (1,520 in 
A549, 1,597 in HeLa DMEM and 1,709 in HeLa HPLM datasets) and to 
improve the signal to noise ratio, principal component analysis (PCA) 
was performed on the datasets to capture at least 90% of the varia-
tion, producing 334 (A549), 325 (HeLa DMEM) and 231 (HeLa HPLM) 
new features. The resulting profiles were then used to calculate the 
Pearson correlation coefficient between all hit perturbation profiles 
(gene level). First, annotated protein clusters were obtained from the 
28.11.2022 CORUM4.0 database31. Clusters with at least 33% of the 
hit genes were identified using the gene symbols from both datasets 
(645 clusters in A549, 953 clusters in HeLa HPLM and 1,350 clusters in 
HeLa DMEM). Then, all the correlations between each pair of genes in a 
cluster were calculated. The distribution of all the correlations between 
profiles within clusters versus the distribution of all the correlation 
between profiles from all hit genes were plotted in Fig. 2d. Second, 
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we performed a similar analysis based on the protein link scores as 
predicted by the STRING database (v11.5, ‘9606.protein.links.v11.5.txt.
gz’)32. To start, protein IDs from STRING were mapped to gene symbols 
using preferred_name extracted from the ‘9606.protein.info.v11.5.txt.
gz’ file. All the possible pairwise correlations between the hit gene pro-
file with a reported link score in the STRING database were calculated. 
Next, the correlations were binned into eight equally spaced bins and 
the distribution of the STRING link scores for each bin were plotted 
using seaborn.boxenplot81 in Python.

Comparison to cancer dependency map data
From DepMap data, we divided genes expressed in HeLa cells into  
essential and nonessential categories based on DEMETER2 gene 
dependency scores58 using a threshold score of −0.5 for gene essenti-
ality and plotted the distributions of essential and nonessential genes 
versus their morphological signal score (see below for the definition).

UMAP clustering of the hit perturbation profiles
To evaluate and demonstrate the ability of morphological profiles 
to uncover biologically relevant interactions and structures, the 
UMAP algorithm was used to project the hit gene profiles into a 
two-dimensional plane. PCA was performed on the datasets to capture 
at least 90% of the variation as described above before the application 
of the UMAP algorithm. The Python library UMAP was used to apply the 
UMAP algorithm using ‘cosine’ for parameter ‘metric’. The details of the 
parameters used are available on the GitHub repository. Some of the 
resulting clusters were manually labeled to highlight some underlying 
interesting biology using GO terms (biological processes and cellular 
components) as listed on the GSEA-MSigDB web portal (http://www.
gsea-msigdb.org/gsea/msigdb/human/collections.jsp#C5).

Hierarchical clustering of hit perturbation profiles and 
representative heat maps
Correlations between morphological profiles is a powerful tool to 
extract biological insights from datasets. For example, similarity (or 
dissimilarity) contains information regarding functional clusters,  
protein structure, signaling pathways and their directionality. To 
this purpose, first, PCA was performed on the datasets to capture at  
least 90% of the variation as described above followed by the selec-
tion of a subset of perturbations associated with a functional gene 
set as specified in each instance. Then, the corr function from  
the pandas library in Python was used to calculate the pairwise  
Pearson correlation coefficient of the perturbation profiles for 
each dataset. The hierarchical clustering of the correlations and the  
plotting of the heat maps was performed using the seaborn’s cluster-
map function in Python. The ward variance minimization was used 
as the clustering algorithm (‘method’) based on the ‘euclidean’ as the 
distance metric.

For the combined heat maps used in Fig. 3e,f to compare DMEM 
and HPLM screens, the above process was performed on one screen 
as explained (with no heat maps generated at this step). Then, the 
order of clustering was extracted from one screen and applied to the 
other screen to enable two types of comparisons: direct comparison 
between correlations from two screens and high-level structural 
comparison in the clustered correlations. To effectively illustrate the 
output, both sets of ordered correlations were merged into a single 
heat map with the bottom left half representing one screen and the 
top right representing the other, using the seaborn.clustermap81 
function in Python.

Preranked GSEA analysis of perturbations based on 
morphological signal strength or similarity
To better understand the biological processes highlighted in each 
HeLa screen and to compare the phenotypic downstream effects of 
the environment on cells, preranked GSEA analysis was performed. 

The analysis was performed on the GSEA v.4.2.3 Mac software and the 
genes were ranked based on the morphological signal score using the 
‘c5.go.bp.v2022.1.Hs.symbols.gmt [Gene ontology]’ gene set database 
with 2,000 permutations. The morphological signal score was calcu-
lated using this equation for each perturbation

morphological signal score =
n
∑
i=1

(− log(P valuei)) .

The P values were calculated as described in the hit-calling section, and 
n refers to features significantly different from the nontargetting con-
trols (P value of 0.001). The code used to calculate the morphological 
signal score as well as the list of perturbation scores for each dataset 
is available on the GitHub repository. The EnrichmentMap application 
based on the Cytoscape v3.9.1 software platform was used to visualize 
the enrichment maps (node cut-off q value of 0.05).

Preranked GSEA analysis was performed to determine enrichment 
for biological terms based on the morphological profile similarity to a 
query gene of interest. Genes were ranked based on cosine similarity to 
the profile of the query gene, then GO term enrichment was performed 
using the GSEApy package and the ‘GO_Cellular_Component_2021’ 
database.

Single feature screen analysis
For each feature in the feature-selected dataset, genes were sorted by P 
value (as generated during hit calling) and a top 20+ list was created for 
each feature that contained all genes with a P value less than or equal 
to that of the 20th gene. The top 20+ list was assessed for GO term 
enrichment using the Python GOATOOLS library82 with the default 
Benjamini–Hochberg FDR correction. GO terms were considered 
enriched if they had a P value of <0.05 after an additional Bonferonni 
correction. Compartment-specific gene lists were assayed for enrich-
ment in the top 20+ lists using a Fisher exact test with a Benjamini–
Hochberg FDR correction from the Python SciPy library83. Plots were 
made with Python library Matplotlib84. For exploration of granularity 
features, guide normalized but not feature-selected datasets were 
aggregated with Pycytominer and plotted with Seaborn81. Gene lists 
were taken from the Metabolic Atlas85. Granularity features were visu-
alized with Python SciPy and scikit-image86 libraries as implemented 
in CellProfiler.

Atlas cell retrieval tool
Example single-cell image crops can be retrieved from any of the 
screens using a retrieval script included in our paper repository at 
https://github.com/broadinstitute/2022_PERISCOPE. Images are 
retrievable by gene name or sgRNA barcode sequence and example 
images can be chosen randomly or set to the most representative cells 
for that barcode as determined by closest k-means clustering using 
scikit-learn87. Individual channel crops are from corrected images on 
which the final analysis measurements are made. Mask crops are from 
segmentations generated during the analysis pipeline and are filled 
light gray to show the cell of interest and dark gray to show cells within 
the same crop assigned to the same perturbation.

TMEM251 localization assay
HT1080 cells were transduced with lentiviral vectors expressing 
either TagBFP-tagged GALNT2 (Golgi) or mRFP1-tagged TMEM192 
(lysosome), and selected with antibiotics. Cells with stable integration 
were fixed with 4% formaldehyde (15 min at 4 °C), permeabilized with 
20 µg ml−1 digitonin (30 min at room temperature), blocked with 1% BSA 
(30 min at room temperature) and incubated with primary antibody 
against TMEM251 (HPA048559, Sigma-Aldrich; 1:200 overnight at 4 °C) 
followed by Alexa Fluor 488-conjugated secondary antibody (1:1,000, 
2 h at room temperature). Samples were imaged on the Phenix imager 
(Perkin-Elmer) with a 63× objective in confocal mode.
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WGA/LAMP1 costaining and quantification of lysosomal 
glycan accumulation followed by CRISPRi perturbations
HT1080 CRISPRi cells were transduced with sgRNA-expressing lentivi-
ral vectors and selected with antibiotics. For dual-target samples, cells 
were transduced simultaneously with two vectors and coselected with 
two antibiotics. At 8 days after sgRNA transduction and 2 days after 
final replating, cells were fixed, permeabilized, blocked and stained 
as above, using primary antibody against LAMP1 (ab25630, Abcam; 
1:50) and Alexa Fluor 647-conjugated secondary antibody. Alexa Fluor 
555-conjugated WGA at 1.5 µg ml−1 and Hoechst 33342 at 5 µg ml−1  
were included during secondary antibody incubation. Samples were 
imaged on the Phenix imager (Perkin-Elmer) with a 63× objective in 
confocal mode.

Image analysis was performed using the Harmony software 
(Perkin-Elmer), where images were flat field corrected and regions 
corresponding to the nucleus, cytoplasm and lysosome were identified. 
WGA signals that colocalized with the lysosomes were quantified by 
the median fluorescence intensity (MFI) for each cell. Each biological 
replicate (two per condition) was represented by the upper quartile of 
the per-cell MFIs from all segmented cells.

Lysosomal pH measurement
HT1080 CRISPRi cells stably expressing rat Lamp1 tagged with mScarlet 
(on the lumen side) were transduced with sgRNA-expressing lentiviral 
vectors and selected with antibiotics. Cells were imaged live, in an 
environmental control chamber (OKO) at 37 °C and 5% CO2, 8 days 
after sgRNA transduction and 1 day after replating into imaging media 
on an 8-well chambered cover glass (Cellvis, C8-1.5H-N). Imaging was 
performed on an SP8 scanning microscope (Leica) in FLIM mode 
using a 100× objective. Samples were excited by a white light laser at 
561 nm and 40 MHz, and emission collected between 590 and 700 nm. 
Imaging media consisted of FluoroBrite DMEM (Life Technologies, 
A1896701) + 10% FBS + 1% GlutaMax (Gibco, 35050061).

Image analysis was performed using in-house scripts, which identi-
fied lysosomal regions and the mean arrival time (lifetime) of photons 
in each pixel. The median lifetime from all lysosomal pixels in each 
field of view (consisting of one to two cells each, with ≥15 fields per 
condition) was computed and represented as one data point per field 
of view. After the initial imaging, 100 nM Bafilomycin A1 was added to 
the nontargeting sample for a positive control, which was re-imaged 
5 h after the treatment.

Lysosomal hydrolase activity assay
HT1080 CRISPRi cells were transduced with sgRNA-expressing len-
tiviral vectors and selected with antibiotics. At 9 days after sgRNA 
transduction and 1 day after final replating, cells were assayed for their 
lysosomal hydrolase activity by incubating with 0.2 µg ml−1 Hoechst 
33342 and either 200 µM PFB-FDGlu (for glucosylceramidase; Invit-
rogen, P11947) or 33 µM C12FDG (for beta-galactosidase; Invitrogen, 
I2904) in imaging media for 1 h at 37 °C, before imaging on the Phenix 
imager (Perkin-Elmer) with a 63× objective in confocal mode.

Imaging analysis was performed using the Harmony software 
(Perkin-Elmer), where flat field-corrected images were segmented for 
nucleus and cytoplasm. Total fluorescence intensity for each cell was 
extracted, and each biological replicate (two per condition) was repre
sented by the median of the per-cell fluorescence (MFI) from all seg-
mented cells, relative to the nontargeting controls, as log10 fold change.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are publicly available. Phenotyping and ISS images and 
image-based profiles are available in the Cell Painting Gallery80 on 

the Registry of Open Data on AWS (https://registry.opendata.aws/
cellpainting-gallery/) under accession number cpg0021-periscope. 
Instructions for retrieving images and profiles are available within 
the Cell Painting Gallery documentation via GitHub at https://
github.com/broadinstitute/cellpainting-gallery. Image based 
profiling data is welded to individual datasets using a template 
available via GitHub at https://github.com/broadinstitute/pooled-cell- 
painting-profiling-template. It is processed with a recipe available via 
GitHub at https://github.com/broadinstitute/pooled-cell-painting- 
profiling-recipe. The recipe outputs for the datasets that we report  
here are available via GitHub at https://github.com/broadinstitute/ 
CP186-A549-WG and https://github.com/broadinstitute/CP257- 
HeLa-WG. The comparison between pairwise correlation of  
perturbations to other databases was performed using the 28.11.2022 
CORUM4.0 database (https://mips.helmholtz-muenchen.de/corum/
download) and the STRING v11.5, ‘9606.protein.links.v11.5.txt.gz’ 
(https://version-11-0.string-db.org/cgi/download.pl?).

Code availability
All code is publicly available. The recipe outputs were further pro-
cessed to generate the profiles analyzed in this paper. Code for 
the final processing and the creation of all figures in this paper are 
available via GitHub at https://github.com/broadinstitute/2022_
PERISCOPE. The exact CellProfiler pipelines used in the screen are 
available in the Cell Painting Gallery80, while continuously improved 
image analysis pipelines and AWS Lambda scripts used to trigger 
them are available via GitHub at https://github.com/broadinstitute/
pooled-cell-painting-image-processing.
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Extended Data Fig. 1 | Example barcode calling based on twelve in-situ cycles. An example of a group of cells tracked over the twelve cycles of in-situ sequencing to 
call barcodes. Cells I and II highlight how the signal from fluorescent nucleotides are translated into a barcode read over twelve cycles.
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Extended Data Fig. 2 | Technical summary of the HeLa whole genome screens. 
The distribution for the number of cells per gene and per guide present in the 
HeLa DMEM (a) and HPLM (b) dataset. (c-d) The distribution of normalized 
mean intensity in the mitochondrial channel from guide aggregated profiles 
in HeLa DMEM (c) and HeLa HPLM (d). Every dot overlaid on the boxplots 
represents a sgRNA (n=4 for guides targeting the TOMM20 gene and n=450 for 
nontargeting guides). The boxplots display the data as a distribution where the 
box spans from the first to the third quartile with the median as the center line. 
The whiskers extend to the maximum range of the distribution within 1.5 times 
the interquartile range. (e-f) Comparison of the relative abundance of sgRNA 

barcodes as quantified by NGS or in situ sequencing in HeLa DMEM (R2 = 0.89) (e) 
and HeLa HPLM (R2 = 0.92) (f), n= 75,000. Comparison of the relative abundance 
of barcodes as quantified by in situ sequencing among 3 different biological 
replicates representing individual viral transductions in HeLa DMEM (R1to2

2 = 0.97, 
R1to3

2 = 0.95, R2to3
2 = 0.96) (g) and HeLa HPLM (R1to2

2 = 0.97, R1to3
2 = 0.96, R2to3

2 = 0.96) 
(h), n=84,000. The correlation coefficients in (e-h) are calculated using Pearson 
correlation, and the solid black line represents a linear regression fit of the data, 
with the shaded region around the regression line indicating the 95% confidence 
interval calculated using the standard error of the regression.
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Extended Data Fig. 3 | Number of hits and levels of guide similarity at different 
false discovery rates for the HeLa DMEM screen. (a) Bar graph of the number 
of hit genes identified in the HeLa DMEM screen at different false discovery 
rates. Green represents hit genes called based on single compartments (ER, 
Mitochondria, Actin, DNA and Golgi/Membrane) and blue represents hit genes 
called based on overall gene profile. Detailed description in the methods section. 

(b) Bar graph of the mean average precision (mAP) for hit perturbations in the 
HeLa DMEM screen at different false discovery rates. mAP was calculated by 
scoring each guide's ability to retrieve other guides targeting the same gene from 
the pool of all non-targeting guides based on cosine similarity and is a measure of 
phenotypic activity.
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Extended Data Fig. 4 | Hit genes can be called in multiple channel 
combinations. Genes called as hits in the HeLa DMEM (a-b), HeLa HPLM (c-d), 
and A549 (e-f) screens can be called as hits because of significant perturbation to 
their whole profile, any individual screen channel, or any combination thereof. 

Specific combinations without any hit genes are omitted from the bar plots 
(a,c,e) and whole profile hit information is omitted from the Venn diagrams 
(b,d,f) for clarity.
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Extended Data Fig. 5 | Clustering by optical profiles from all hit perturbations 
from whole genome screens. Heatmaps representing Pearson’s correlation 
between gene profiles after hierarchical clustering using Ward's method. The 

gene profiles come from the hit perturbations from HeLa DMEM (a), HeLa HPLM 
(b), and A549 (c) datasets. High resolution versions are available at https://github.
com/broadinstitute/2022_PERISCOPE.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Hierarchical clustering of high dimensional 
morphological profiles captures physical interactions and signaling pathway 
relationships in HeLa DMEM data. (a) Ribosomal genes show enrichment 
in clusters that recapitulate known protein complexes as highlighted in the 
heatmap. Ribosome image created with Biorender. (b) The PI3K/AKT Signaling 

Pathway forms clusters where the correlation/anti-correlation in morphological 
profiles recapitulates the known activatory/inhibitory effects of genes, as 
annotated. Heatmaps are of Pearson’s correlation between gene profiles after 
hierarchical clustering using Ward's method.
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Extended Data Fig. 7 | Morphological signal score is not well correlated with 
gene dependency or baseline gene expression. Comparison of the distribution 
of morphological signal scores and gene dependency scores for the HeLa DMEM 
(a), HeLa HPLM (b) and A549 (c) datasets. The gene dependency score was 
estimated using DEMETER2 for HeLa cells and DepMap for A549 cells. The dashed 
red line at −0.5 threshold highlights likely essential genes. Comparison of the 

distribution of morphological signal scores and gene expression TPM values 
for genes with TPM value > 0 for the A549 (d), the HeLa DMEM (e) or HeLa HPLM 
dataset (f). TPM values are inferred from RNA-seq data in DepMap data using 
the RSEM tool. In all panels, blue points indicate all perturbations, red points 
compartment hits, and yellow points whole cell hits.
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Extended Data Fig. 8 | Technical summary of the A549 whole genome screen. 
(a) The distribution for the number of cells per gene and per guide present in  
the A549 dataset (not including nontargeting guides). (b) Comparison of the 
relative abundance of barcodes as quantified by NGS or in situ sequencing  
(R2 = 0.84), n=65,000. (c-e) Comparison of the relative abundance of barcodes 
as quantified by in situ sequencing among 3 different biological replicates 
representing individual viral transductions (R1to2

2 = 0.85, R1to3
2 = 0.85, R2to3

2 = 0.94),  
n=80,000. The correlation coefficients in (b-e) are calculated using Pearson 
correlation, and the solid black line represents a linear regression fit of the 

data, with the shaded region around the regression line indicating the 95% 
confidence interval calculated using the standard error of the regression. (f) The 
distribution of normalized mean intensity in the mitochondrial channel from 
guide aggregated profiles in the A549 dataset. Every dot overlaid on the boxplots 
represents a sgRNA (n=4 for guides targeting the TOMM20 gene and n=450 for 
nontargeting guides). The boxplots display the data as a distribution where the 
box spans from the first to the third quartile with the median as the center line. 
The whiskers extend to the maximum range of the distribution within 1.5 times 
the interquartile range.
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Extended Data Fig. 9 | Guide representation affects profile strength and 
similarity in pooled CRISPR screens. Mean average precision (mAP) was 
calculated at different representation levels subsampled from Funk et al.10 by 
scoring each guide's ability to retrieve other guides targeting the same gene from 

the pool of all non-targeting guides based on cosine similarity (see Methods for 
calculation). mAP is a proxy for profile strength and similarity. Highlighted points 
represent mAP at specified mean guide-level representation from the PERISCOPE 
datasets for comparison.
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Extended Data Fig. 10 | Examples of single cell images with strong 
morphological profiling phenotypes detected in individual channels. 
Representative single cell images showing each of the acquired channels, a 
five-color merge, and cell mask for non-targeting control (a) and five specific 
perturbations (b-f) from the HeLa DMEM dataset. Representative perturbations 
from gene sets highlighted in Fig. 2c were selected for having a large number of 

significantly perturbed features in a specific channel (red box) and therefore 
showing a strong phenotype by morphological profiling that may or may not 
be visible by eye. Representative cells are shown with light gray shading in Mask 
downsample panel and neighboring cells with the same perturbation are shown 
with dark gray shading.

http://www.nature.com/naturemethods
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