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Akey challenge of the modern genomics erais developing empirical
data-driven representations of gene function. Here we present the

first unbiased morphology-based genome-wide perturbation atlasin
human cells, containing three genome-wide genotype-phenotype maps
comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million
cells. Our optical pooled cell profiling platform (PERISCOPE) combines a
destainable high-dimensional phenotyping panel (based on Cell Painting)
with optical sequencing of molecular barcodes and a scalable open-source
analysis pipeline to facilitate massively parallel screening of pooled
perturbation libraries. This perturbation atlas comprises high-dimensional
phenotypic profiles of individual cells with sufficient resolution to cluster
thousands of human genes, reconstruct known pathways and protein-
proteininteraction networks, interrogate subcellular processes and identify
culture media-specific responses. Using this atlas, we identify the poorly
characterized disease-associated TMEM251/LYSET as a Golgi-resident
transmembrane protein essential for mannose-6-phosphate-dependent
trafficking of lysosomal enzymes. In sum, this perturbation atlas and
screening platform represents a rich and accessible resource for connecting
genesto cellular functions at scale.

Large-scale DNA sequencing has transformed our ability toidentify and
catalog diverse genotypic information but created a new bottleneck:
characterizing the diverse impacts of genotype on human biology.
Thus, systematically connecting human genes and genotypes to
disease- and trait-relevant phenotypes remains a grand challenge for
biomedicine.

Pooled CRISPR screens' have proven a powerful tool for tackling
this challenge, but typically require compromising on either pheno-
typic content or scale. Genome-scale pooled CRISPR screens enable
systematic assessment of gene function but compatible phenotypes,

suchasproliferation or cell death, are often simple or require atargeted
assay, making them inappropriate for assessing many biologically
relevant processesin human cells, which are oftensubtle, graded and/or
complex? In contrast, high-content profiling approaches such as
imaging, transcriptomics, proteomics and metabolomics can capture
hundreds of quantitative phenotypes for each sample, providingarich
phenotypic profile, but are typically incompatible with genome-scale
perturbation. A notable exception is Perturb-seq*®, which has very
recently been applied to profile the effects of CRISPR interference
(CRISPRi) knockdown (KD) of the expressed genome of the human
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chronic myeloid leukemia cell line K562 (ref. 7). This study demon-
strated theimmense value of generating rich, high-dimensional repre-
sentations of cell state at genome scale using anew (and not yet widely
available) DNA sequencing technology®’ and resource-intensive data
generation effort.

Optical pooled screening, which combines image-based phe-
notyping with image-based sequencing of perturbation barcodes,
has emerged as a promising and complementary approach for
high-dimensional genotype-phenotype mapping at single-cell reso-
lution that is scalable and cost effective'®™". Optical pooled screens
enable quantitative assessment of phenotypes invisible to molecular
profilingapproaches, suchas cellmorphology and subcellular localiza-
tion, with greater throughput thanarrayed image-based screens'* and,
in contrast to pooled enrichment-based imaging approaches™ ¢, have
norequirement for physical selection or predefinition of phenotypes.

Here, we combined unbiased high-dimensionalimage-based cell
phenotyping with massively parallel optical pooled CRISPR screens
to build the first genome-scale perturbation atlas of morphology
phenotypesin human cells. We report the design of an optimized cell
phenotyping panel based on the popular Cell Painting** image-based
profiling assay that enables five-color fluorescence microscopy of cell
phenotypes followed by four-color insitu sequencing by synthesis (ISS)
toassign perturbations to cells. We also built a scalable, open-source,
cloud-based pipeline for generating barcoded image-based profiles
from genome-scale perturbation datasets. We use this technology to
execute two whole-genome pooled optical CRISPR screens in human
cervical cancer cells (HeLa) cultured either in traditional cell culture
medium or physiologic medium?, profiling the effects of >20,000
single gene knockouts (KOs) in unbiased fashion and mapping
genome-wide gene-by-environment interactions. We additionally
apply our approach in human lung cancer cells (A549). Together, this
work establishes avaluable resource for connecting human genotypes
to high-dimensional image-based cellular phenotypes at scale.

Results

High-dimensional optical CRISPR screens at genome scale

To assess genome-wide KO effects on cell morphology, we first con-
structed a whole-genome CRISPR guide RNA library optimized for
optical screening. To build this library, we selected, on average, four
single guide (sg)RNAs per gene from existing libraries”>*, identifying
sgRNA sequences that would allow for total deconvolution of the sgRNA
libraryin12cycles of ISS while also allowing for a Levenshtein distance
of 2between sgRNA sequences to enable error detection?, resultingin
alibrary containing 80,408 sgRNAs targeting 20,393 genes (Supple-
mentary Table 1). We cloned the sgRNA library into the CRISPR droplet
sequencing (CROP-seq) vector’, enabling expression and direct ISS of
sgRNA sequences (henceforth referred to as barcodes) and packaged
it for lentiviral delivery.

To comprehensively map genome-wide gene KO effects to
high-dimensional image-based phenotypes, we built a high-throughput
data generation and analysis pipeline, perturbation effect readout
in situ with single-cell optical phenotyping (PERISCOPE), compris-
ing a suite of highly scalable wet and dry laboratory protocols that
enables facile screening of genome-scale perturbation libraries by
optical profiling. We first developed an optimized, destainable vari-
ant of the Cell Painting panel to collect morphological data by fluo-
rescence imaging of cell compartments, followed by ISS of sgRNAs
to assign perturbations to cells (Fig. 1a). This approach results in five
phenotypic images for each cell-phalloidin (actin), anti-TOMM20
antibody (mitochondria), wheat germ agglutinin (WGA) (Golgi and
cellmembrane), concanavalin A (ConA) endoplasmic reticulum (ER))
and4,6-diamidino-2-phenylindole (DAPI) (nucleus)—plus 12 sequenc-
ingimages, which are used to identify sequential sgRNA bases (Fig. 1b
and Extended DataFig.1). To overcome spectral overlap between fluo-
rescent phenotyping markers and fluorescent sequencing signal,

we conjugated phenotypic probes to fluorophores using a disulfide
linker*?¢, This strategy allows five-color labeling followed by treat-
ment with tris(2-carboxyethyl)phosphine (TCEP), a reducing agent,
resultinginlinker cleavage and liberation of linked fluorophores, free-
ing up fluorescent channels for ISS (Fig. 1c). To analyze these data, we
modified the standard Cell Painting image analysis workflow within the
open source image analysis software CellProfiler” to handle the added
complexity of pooled perturbations, including the incorporation of
image alignment across different resolutions and barcode calling'
(Fig.1d). Similarly, we adapted our data analysis workflow based on the
open-source Pycytominer® library (Methods) to process single-cell
profiles using pooled data rather than arrayed data.

Morphology-based genome-wide perturbation maps in HeLa
cells

We first aimed to demonstrate the scalability and robustness of the
PERISCOPE pipeline by executing two whole-genome pooled opti-
cal CRISPR screens in human cervical cancer cells (HeLa) in separate
growth media (Dulbecco’s modified Eagle medium (DMEM) and human
plasma-like medium (HPLM), detailed below). For the HeLa DMEM
screen, we used 30 identically prepared wells of six-well plates and
collected morphological profiles from 12,312,520 individual cells
yielding 20,421 gene-level profiles with an average 491 cells per gene
(s.d.of 655) and 125 cells per guide (s.d. of 327) (cell coverage numbers
exclude nontargeting controls, which are overrepresented; Extended
Data Fig. 2a). Similarly, the HeLa HPLM screen was 24 wells, 9,111,690
cells, 20,420 gene-level profiles, 366 cells per gene (s.d. of 364) and
93 cells per guide (s.d. of 181). As expected, the PERISCOPE pipeline
reported that perturbation of TOMM20, the direct target of the anti-
body stain for mitochondria, impacted the expected mitochondrial
features (Extended Data Fig. 2¢,d). Crucially, optical sgRNA counts
were highly correlated with counts obtained from next-generation
sequencing (NGS) of perturbed cells (Extended Data Fig. 2e,f), validat-
ingISSaccuracy and between biological screenreplicates, confirming
screen robustness (Extended Data Fig. 2g,h).

We next applied a hit calling pipeline that we designed to iden-
tify gene perturbation signatures above background noise using
image-based features. Optical profiling collects spatial information
and thus our pipeline was able to identify two classes of screen hit:
‘whole-cell’ hit genes, which were defined based upon aggregate signal
fromall cell compartmentsin a manner typical ofimage-based profil-
ing experiments, and ‘compartment’ hit genes identified by imaging
measurements from a subset of the five labeled subcellular compart-
ments (Methods). Using a false discovery rate (FDR) of 1%, we identified
891/956 whole-cell hit genes, and 1,039/597 compartment hit genes, for
atotal 0f 1,930/1,553 hits (DMEM/HPLM) (Fig. 2a and Supplementary
Table 2). As the choice of FDR cut-off is arbitrary, we show that less
stringent FDRs produce larger hit lists (Extended Data Fig. 3a) with a
corresponding decrease in average profile strength (Extended Data
Fig.3b) calculated using ametric to detect perturbation signal against
abackground comprising negative controls (mAP)*. Unsurprisingly,
the whole-profile hits show much higher profile strength than com-
partment hits since the availability of complete profile information
enhances signal detection.

We next performed descriptive analyses of our hits to demonstrate
biological signal in these screens. We found compartment hit genes
in each subcellular compartment, demonstrating that each channel
is providing useful information (Fig. 2b and Extended Data Fig. 4a-d).
Importantly, we also observed that knocking out genes known to act
in well-defined cell compartment-specific roles produced strong
morphological phenotypes in those compartments. Specifically, we
selected genes encoding five compartment-associated protein com-
plexmembers and grouped their morphological profiles by complex.
Foreachofthese complexes, we observed an enrichment in phenotypic
features extracted from the expected cellular compartment (Fig. 2c).
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Fig.1| Pooled optical screens with PERISCOPE. a, The experimental workflow
for PERISCOPE screens. b, Example images of five phenotypic stains and
fluorescent ISS. ¢, A schematic of the destaining strategy to enable ISS after
fluorescence imaging of phenotypic stains. SS, disulfide linked fluorophore;
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SH, reduced disulfide linkage. d, An overview of the PERISCOPE analysis pipeline
including extraction of phenotypic features, deconvolution of barcodes and
genotype-phenotype correlation. Figure created with BioRender.com.

Forexample, while perturbations targeting outer mitochondrial mem-
brane proteins produce morphological phenotypes throughout the
cell, aplurality (54% DMEM/52% HPLM) of the overall signal is concen-
trated inthe mitochondria. Likewise, sgRNAs targeting genes involved
in protein mannosylation display an enrichmentin phenotypic features
from the ER, where synthesis of mannosyl donor substrates and man-
nosyltransfer to proteins takes place®®. Unsurprisingly, genes involved
in highly pleiotropic processes (for example, cortical cytoskeleton),
produce effects across cell compartments.

We next benchmarked image-based gene KO profiles against
existing databases of gene function. First, using profile correlation
between gene KOs as a proxy for functional similarity between genes,
we compared our screen data with the protein-protein interaction
databases CORUM* and STRING*. 0f1,930/1,553 total hits, we identi-
fied 877/671 genes belonging to 1,350/953 unique complexes present
inthe CORUM4.0 database (DMEM/HPLM, respectively). Profiles from
hit gene pairs within a cluster showed higher correlation values than
the background distribution of all possible hit gene pairs (Fig. 2d).
Additionally, morphological profile pairs with higher correlations
demonstrated higher protein—protein interaction confidence scores
from the STRING database (Fig. 2e).

We performed unbiased clustering of screen hits based on mor-
phological similarity, and visualized high-level similarity between
morphological profiles viatwo-dimensional uniform manifold approxi-
mation and projection (UMAP) embedding (Fig. 2f,g). We observed
logical clustering by biological function across an array of processes,
suchas DNA replication, lysosome acidification, Golgi vesicle transport,
messenger RNA processing, ribosome biogenesis, protein N-linked
glycosylation, mannosylation, aerobic respiration and others. Hier-
archical clustering of all hit genes based on the full high-dimensional
profiles also revealed biologically coherent clustering of perturbations

targeting related genes (Extended Data Fig. 5a,b). Forexample, targeted
exploration of the hierarchical clusters in the DMEM condition shows
that genes encoding various types of ribosomal proteins are largely
groupedintothreedistinct clusters (Extended DataFig. 6a). Thelargest
clusterisenriched for genes encoding the large and the small subunits
of the mitochondrial ribosome, which is essential in the translation
of mitochondrial genes®’, while two other clusters show enrichment
for components of the large 60S subunit and the small 40S subunit
of the mature 80S eukaryotic ribosome, respectively**. This example
highlights the ability of optical pooled screens to capture structural
information, as recently demonstrated'®. We also found that signaling
pathways were often well captured: as an example, perturbations tar-
geting the phosphatidylinositol 3-kinase/AKT serine-threonine protein
kinase (PI3K/AKT) signaling pathway largely fall into two distinct clus-
ters (Extended Data Fig. 6b). This pathway isinvolved in the cell cycle,
growth and proliferation, and implicated in the progression of various
cancers.” Interestingly, components that have astimulatory effect on
the pathway suchas RPTOR, MTOR or MYC strongly correlate with each
other and also demonstrate significant anticorrelation to inhibitory
factors such as PTEN, TSC1 or TSC2. The ability of the morphological
profiles to distinguish the directionality of the signaling factorsis a
useful tool in understanding the underlying biology.

We subsequently evaluated the extent to whichimage-based gene
KO profiles were correlated with gene KO fitness effects using the Broad
Institute’s Dependency Map (DepMap) database®. While essential
genes were more likely, on average, to produce a high signal score
(Methods), the majority of screen hits (80.4%/75.6% for DMEM/HPLM)
were nonessential genes, consistent with most gene KOs producing
optical phenotypes beyond simple cell toxicity (Fig. 2h and Extended
DataFig. 7a-c). Previous work has shown that Cell Painting can detect
many specific cell health readouts including cell viability and cell cycle,
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Fig. 2| Summary of the results from two PERISCOPE screens at the whole-
genome scale performed in HeLa cells in two growth media (DMEM and
HPLM). a, Abar graph representing the number of hit genes identified. Green
represents hit genes based on individual compartments (ER, mitochondria
(mito), actin, DNA and Golgi/membrane) and blue represents hit genes

based onthe overall profile. b, The distribution of hit genes based on
individual compartments (froma). It is possible for agene to be hitin multiple
compartments without being a whole-cell hit, see Extended Data Fig. 4c-ffor
details. ¢, Pie charts showing the average normalized fraction of the number
of features significantly different from controls in each phenotypic channel
for the genes in the indicated set. Filled wedges represent the channel in which
the protein products are known to be present. d, The distributions of optical
profile correlations between random hit gene pairs (blue) versus correlations
between gene pairs in CORUM4.0 protein complexes (red). e, Aboxen plot

(letter-value plot) representing STRING scores divided into bins based on
PERISCOPE profile correlation between gene pairs, n =1,930 genes for DMEM
and n=1,553 genes for HPLM. The boxen plots display the data as a distribution
where the center line represents the median, the central box represents the
interquartile range from 25th to 75th percentile and the subsequent boxes
representincreasingly narrower quantiles calculated for half of the remaining
data. f,g, UMAP embedding of the hit gene profiles from the HeLa DMEM (f)

or HPLM (g) dataset. Each dot represents a genetic perturbation and distance
implies the correlation of profiles in atwo-dimensional embedding. Manual
annotation of cluster functions are presented for highlighted clusters based on
GO datasets. Example insets show coherent clustering of related genes. h, The
distribution of morphological signal scores for essential and nonessential genes
(DepMap gene effect at —0.5 threshold) for all perturbations in the HeLa DMEM
and HPLM datasets.

sothat even cytotoxic perturbations, such as KO of essential genes, can
generate distinct morphological profiles”. Further, morphological
signal score was not well correlated with baseline gene expression, as
many genes expressed at low levels still produce significant morpho-
logical signal when perturbed (Extended Data Fig. 7d,e).

Comparing gene-by-environment interactions at genome
scale
Cell metabolismis influenced by a vast array of interactions between
genes and environmental stimuli and, as such, in vitro genetic screens
carried out in traditional cell culture media, which poorly recapitulate
physiologic environments, may fail to capture metabolically relevant
phenotypes. Recently, in contrast to typical laboratory culture medium
DMEM, ‘physiologic media’such as Plasmax®® or HPLM* have been devel-
oped as tools to study the effects of genetic perturbations under envi-
ronmental conditions designed to more accurately mimicin vivo human
physiology and, inarecent study, HPLM was shown to dramatically alter
the spectrum of gene essentiality in K562 cells*. Such studies demon-
strate the usefulness of screening under physiologically relevant condi-
tions, but have beenlimited to growth assays, preventing the systematic
assessment of gene perturbation on high-dimensional cell phenotypes.

In addition to their experimental tractability and prior validation
in optical screening workflows'* %, HeLa cells have been demonstrated
to exhibit sensitivity to metabolic environmental cues such as altered
glucose levels*>*, To investigate these differences, we performed gene
setenrichment analysis (GSEA) betweenthe HeLa screens, acomputa-
tionalmethod that determines whether there are statistically significant
differences between two biological states using ranked lists*>*. Our
lists were ranked by the strength of each gene’s profile compared with
control profiles using their ‘morphological signal score’ (Methods). On
the basis of the GSEA analysis, 391 gene sets were enriched inthe DMEM
screen and 321 were enriched in the HPLM screen (Supplementary
Table 3). Of these, 275 were common between the two screens, 116 were
specific to the DMEM screen and 46 were specific to the HPLM screen.
We visualized the GSEA results in a gene enrichment map (Fig. 3a).

To further visualize similarities between screens, we generated
comparative diagonally merged heat maps, wherein only hits from
both screens are plotted, the cluster order is set by one arm and the

second armis plotted in the same order (Fig. 3b-f). We observed that
many genetic perturbations yield similar morphological impacts in
both media types. For example, genes associated with small subunit
ribosomal RNA maturation (Fig. 3c) and PI3K AKT mTOR signaling
(Fig. 3d) exhibited strong similarity in pattern and strength of cor-
relations in both DMEM and HPLM. These similarities in correlation
patterns and strength across avariety of core processesin the same cell
line indicate shared central biology and consistency of the screening
method. We also observed that iron sulfur cluster assembly (Fig. 3e),
which s required for mitochondrial respiration**, mitochondrial RNA
metabolic processes and mitochondrial transcription processes was
selectively enriched in the DMEM screen. Taken together, the overall
enrichment of hits associated with central carbon metabolism in the
DMEM screen may be reflective of metabolic differences induced
by high (>25 mM) glucose levels present in DMEM?. Conversely, we
also observed selective enrichment of processes in the HPLM screen
related to DNA damage repair, such as cellular response to gamma
radiation (Fig. 3f), positive regulation of DNA recombination and
double-stranded break repair. This process enrichment is also prob-
ably linked to metabolic rewiring induced by substantial decreasesin
glucose and glutamine upon culture in HPLM as HeLa cells have been
previously shown to exhibit hallmarks of DNA damage when cultured
withreduced concentrations of these nutrients®.

Morphology-based genome-wide perturbation maps in human
lung cancer cells

After successfully completing our first two whole-genome screens, we
wanted to maximize the extensibility of our next whole-genome data-
set by using A549 human lung cancer cells, a cell line commonly used
for Cell Painting***%, This decision was driven by the morphological
profiling field’s active curation' of Cell Painting datasets and ongoing
efforts by other laboratories to develop alignment methods®. Using 54
identically prepared wells of six-well plates, we collected morphological
profiles from 11,211,357 single cells, which yielded 20,393 gene-level
profiles at an average representation of 460 cells per gene (s.d. of
707) and 117 cells per guide (s.d. of 354) (excluding nontargeting
controls). Technical quality metrics such as representation, barcode
calling and NGS concordance and biological replicate concordance

Fig. 3| PERISCOPE identifies media-specific perturbation signatures. a,
Enrichment map for biological processes based on profile signal strength
between the HeLa DMEM and HPLM screens. The enrichment map was generated
using a preranked GSEA analysis with alist of all genes ordered based on the
calculated signal strength as described in methods. The GO: Biological Processes
(GO:BP) gene set was employed for the enrichment analysis. Some of the labels
and single/double nodes are not shown here for clarity. LSU rRNA, large subunit
ribosomal RNA; snRNA, small nuclear RNA. b, A schematic for the generation

of comparative diagonally merged heat maps. c-f, The heat maps display the
Pearson’s correlation between gene profiles from both HeLa screens and are
hierarchically clustered using Ward’s method on a single screen, with the sister

screen plotted in the same order: we observed gene clusters enriched in both
screens (for example, maturation of small subunit RNA (c) and PI3K AKT mTOR
signaling (d)), as well as gene clusters enriched only in the DMEM condition (for
example, the iron sulfur cluster assembly (e)) or HPLM condition (for example,
the cellular response to gamma radiation (f)). The heat maps present hit genes
in the GO:BP maturation of the small subunit ribosomal ribonucleic acid (SSU
rRNA) gene set (GO:0030490) (c), hit genesin the hallmark PI3K AKT mTOR
signaling gene set (d), hit genes in the GO:BP iron sulfur cluster assembly genes
set (GO:0016226) (e) and hit genes in the GO:BP cellular response to gamma
radiation (GO:0071480) (f).
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Fig.4|A genome-wide perturbation map in A549 cells. A summary of the
whole-genome PERISCOPE screen performed in A549 cells. a, Hit genes identified
inthe screeninclude some single compartment and some impacting multiple
compartments in the cell. Green represents hit genes called based on a subset of
cell compartments (ER, mitochondria (mito), actin, DNA and Golgi/membrane)
andblue represents hit genes called based on the overall profile. b, Hit genes
called based on asingle compartment are distributed across all five measured
compartments. It is possible for agene to be a hit in multiple compartments
without being a whole-cell hit, see Extended Data Fig. 3a,b for more details.

¢, Distributions of optical profile correlations among all possible gene pairs
versus correlations among gene pairs representing CORUM4.0 protein
complexes that have at least one-third of complex subunits within hit genes.

d, Aboxen (letter-value) plot representing STRING scores divided into bins based
on PERISCOPE profile correlation between gene pairs, n =1,089 genes.

The boxen plots display the data as a distribution where the center line represents
the median, the central box represents the interquartile range from 25th to 75th
percentile and the subsequent boxes representincreasingly narrower quantiles
calculated for half of the remaining data. e, UMAP embedding of the hit gene
profiles from the A549 dataset. Each dot represents a genetic perturbation and
distance implies the correlation of profiles in a two-dimensional embedding.
Manual annotation of cluster functions is presented for highlighted clusters
based on GO datasets. Example insets show the coherent clustering of related
genes. f,g, Heat maps representing Pearson correlation between gene profiles
after hierarchical clustering using Ward’s method: gene complexes/processes
were enriched in the A549 dataset based on the preranked GSEA analysis and
show hit genes belonging to the GO:BP microtubule nucleation genes set
(G0O:0007020) (f) and hit genes belonging to the GO:BP histone modification
(GO:0016570) (g).

were comparable to those of the HeLa screens (Extended Data Fig. 8).
We again thresholded hits (Fig. 4a) and identified compartment hits
fromallsubcellular compartments (Fig. 4b and Extended Data Fig. 4e,f)
and, as in the HeLa screens, we found that physically interacting pro-
teins (per CORUM and STRING) were more likely to have similar mor-
phological profiles than random hit gene pairs (Fig. 4c,d).

Unbiased clustering of screen hits based on morphological simi-
larity revealed logical groupings by biological function, spanning
processes such as glycosylation, autophagy, proteasomal protein
catabolic processes, mRNA processing, ribosomal RNA metabolic
process, noncoding RNA metabolic process and mitotic cell cycle
(Fig. 4e). Hierarchical clustering based on high-dimensional profiles
alsorevealed biologically coherent clustering of perturbations target-
ing related genes such as those involved in microtubule nucleation
(Fig. 4f) and histone modification (Fig. 4g).

Although we were able to extract meaningful biology from our
A549 dataset, we were initially surprised that it displayed noticeably

lower overall signal than our HeLa datasets, despite similar cell cover-
age (cells per sgRNA). Further examination revealed reduced CRISPR
efficiencyin our A549 Cas9 cell line compared with HeLa (-60% versus
~90%, as measured by indel sequencing), leading to reduced effective
cell coverage in this screen. To further investigate the relationship
between cell coverage and signal, we subsampled data from Funk
et al.’’, a highly sampled (>1,000 cells per sgRNA) optical pooled
CRISPR screen and found that guide-level representation strongly
affects profile strength®” (Extended Data Fig.9). Despite differencesin
screening time point and phenotypic readout between this study and
the PERISCOPE screens, this observation suggests that our screens have
not reached signal saturation and that increasing cell coverage could
enhance our ability to detect perturbation phenotypes.

Genome-wide screens for subcellular phenotypes of interest
High-dimensional profiles generated by PERISCOPE are composed of
thousands of individual phenotypic features, capturing comprehensive
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information about stains in each channel (for example, correlation,
granularity, intensity, radial distribution and texture features) for iden-
tified objects (cells, cytoplasm and nuclei), with a subset also meas-
ured on a per-image basis. Additional features describe objects (area
shape features) and their relationship to nearby objects (neighbors
features). Having seen that full morphological profiles capture biologi-
cally meaningful patterns of similarity, we next explored whether the
datasets could be used to conduct genome-wide screens for individual
morphological phenotypes of interest. To explore the single-feature
screenspace, we analyzed each featurein our feature-selected datasets,
generating a most-perturbed gene list and assessing Gene Ontology
(GO) enrichment within that list. Features with GO enrichment were
distributed across imaging channels for both HeLa screens (Fig. 5a),
whichis unsurprising given that each channel contributed similarly to
our profile-based hit lists (Figs. 2b and 3b) and all canonical channels
contribute fairly evenly to profile strengthin the Cell Painting assay?.
Features with GO enrichment were not as evenly distributed across
feature classes (Fig. 5b). The texture class, which had the most features,
also had the highest proportion of its features (37%: 370 out of 1,001
features) enriched for a GO term. However, it is likely that many of
these features are somewhat correlated since our feature selection
step removes only the most highly correlated features. Notably, area
shape and intensity features, which are often emphasized in other
studies because of their biological interpretability, were less specifi-
cally enriched than less readily understandable categories such as
texture and correlation.

To support the validity of the dataset’s single-feature screens,
we looked at groups of genes whose protein products are known to
functioninthe compartments that we labeled in PERISCOPE and deter-
mined which features had hit lists enriched for those groups. Figure 2c
shows that perturbing these groups of genes produces signal across
the channels, while Fig. 5c demonstrates specific enrichment in our
hitlists for featuresin expected categories for protein mannosylation,
vacuolar-type ATPase, cortical cytoskeleton and outer mitochondrial
membrane (OMM) protein complex. Unsurprisingly, perturbation of
DNA polymerase generated a more pleiotropic phenotype. Feature
enrichment was similar between HeLa DMEM and HPLM screens
(Fig. 5a-c), but the relatively reduced strength of the A549 screen
resulted in negligible enrichment.

Eachscreendatasetincludes 3,973 features from our adapted Cell
Painting assay. Despite considerable redundancy, particularly among
texture and granularity metrics, dozens of morphological phenotypes
of interest to the biological community can now be explored and hits
pursued, regardless of the human interpretability of the features or
apriori hypothesis. As an example, we focused on perturbations that
altered granularity features®® in the WGA channel. Granularity meas-
ures the signallost with successive erosions relative to the total signal,
such that an increase in a granularity measurement of one size must
correspond to a decrease at another size(s). Although conceptually
described as a way to measure the signal present within differently
sized intracellular structures, we downsampled images before quan-
tifying erosions, making our granularity features not very human
interpretable (visualized in Fig. 5e). The GO-enriched terms across the
granularity featuresin the WGA channel presentin our feature-selected
dataset were overwhelmingly related to endocytic pathway acidifica-
tion. This inspired us to look systematically across eight granularity
erosions measured in the WGA channel in cell objects (that is, feature
‘Cells_Granularity_1_ WGA’ and so on), where we found that disruption
of the vacuolar ATPase (either V, or V, subunit) causes a decrease in
WGA signal in the first granularity feature and concomitant increase
in larger granularity features (Fig. 5d) for all datasets. This example
highlights how, beyond morphological profiles, theindividual features
inour datasets canbe used for hypothesis generation, though targeted
follow-up experiments are required for biological interpretation. A pri-
mary advantage of image-based profiling over traditional microscopy

is the quantitative and automated assessment of phenotypic features,
overcoming the subjectivity of analyzing images by eye. Nonetheless,
our atlas contains over 30 million individual cell images that can be
evaluated for phenotypes of interest by a trained eye. To enhance the
usefulness of these datasets, we developed an atlas cell retrieval tool
(Methods), enabling the retrieval of individual images of cells contain-
ing perturbations of interest (Extended Data Fig. 10). Using this tool,
we show that it is possible to find examples of readily interpretable
image-based phenotypes, such as the depletion of TOMM20 signalin
cells containing sgRNAs targeting TOMM20 (Extended Data Fig.10e).
However, most single-gene KO phenotypes, even those with strong
morphological profiles, have phenotypes not readily identifiable by
eye (Extended Data Fig. 10b-d,f), demonstrating the usefulness of
computational feature extraction and profiling beyond simple visual
inspection.

TMEM251/LYSET is essential for lysosomal enzyme trafficking
Having observed that genes cluster by function using morphological
profiles, we next sought to ascertain the function of uncharacterized
genes based on profile similarity. We focused on the poorly character-
ized gene TMEM251, which clustered with genes involved in lysosomal
acidificationin our HeLaDMEM screen. GSEA of genes ranked by simi-
larity to the TMEM251 KO profile in the HeLa DMEM dataset revealed
enrichment for V-ATPase subunits and Golgi components, especially
those related to glycosylation (Fig. 6a,b). On the basis of these term
enrichments, we compared the subcellular localization of TMEM251
relative to the Golgi and lysosomes in HT1080 cells, which were selected
for their relative TMEM251 growth dependency®*. TMEM251 local-
ized primarily to the Golgi, with negligible localization to lysosomes
(Fig. 6¢). TMEM251KD with CRISPRi created strong phenotypesin the
WGA channel (Fig. 6d), contributed by a striking accumulation of WGA
fluorescence in LAMP1-positive lysosomes (Fig. 6d). This phenotype
was seen for most of the perturbations bearing strong profile similarity
to TMEM251 withthe notable exception of SLC35A2, which was the most
similar gene to TMEM251 at the profile level in HeLa cells, suggesting
cell type-specific effects on glycoprotein accumulation in lysosomes
(Fig. 6e and Supplementary Fig. 1a).

How could a Golgi-resident protein influence glycan storage in
the lysosome? We postulated that the lysosomal WGA phenotype
was due to impaired biogenesis of lysosomal proteins in the Golgi.
Notably, GNPTAB/GPNTG showed strong phenotypic similarity to
TMEM251in PERISCOPE and humanloss of function of TMEM251 results
in a clinical presentation similar to that of human loss of function in
GNPTAB/GNPTG". We therefore hypothesized that TMEM251 may par-
ticipate in the mannose-6-phosphate (M6P) pathway. In this pathway,
N-acetylglucosamine-1-phosphate transferase (encoded by GNPTAB)
attaches aphospho-GlcNac from UDP-GlcNac onto a terminal mannose
thatultimately forms M6P*2. M6P is recognized by either of two recep-
tors, M6PR and IGF2R, and released in the lysosomein a pH-dependent
manner. To further corroborate this hypothesis, we compared the
phenotype of cells singly or doubly perturbed for M6PR and IGF2R.
In double KD cells we observed a significant increase in lysosomal
WGA accumulation, whereas single KDs were indistinguishable from
wildtype, consistent with the primary screen (Fig. 6f and Supplemen-
tary Fig. 1b).

Owingtothe strong morphological similarity between TMEM251
and V-ATPase subunits, we examined the effect of TMEM251 KD on
lysosomal pH usinga fluorescence lifetime sensor*’, Whereas treatment
with bafilomycin Al or ATP6V1E1 KD robustly alkalinized lysosomes,
neither GNPTAB nor TMEM251KD significantly changes lysosomal pH
(Fig. 6gand SupplementaryFig. 1c). We therefore reasoned that acidic
lysosomal pH might be required for proper trafficking and functioning
of lysosomal enzymes downstream of TMEM251’s Golgi function and
that the optical profileinduced by V-ATPase perturbationis dominated
by this function. We tested the activity of two lysosomal enzymes that
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feature-selected dataset. The inner ring is the number of features that show GO
enrichment. b, GO enrichment inindividual features is not distributed evenly
across classes of features. The outer ring is the total number of features in our
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enriched in hit lists for features in those compartments. The outer ring indicates
the channelin which enrichmentis expected. The inner ring is the breakdown
ofactual channels that show enrichment for the gene group. d, Disruption of
the vacuolar ATPase (either V, or V; subunit) causes a specific decrease in the
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granularities. Each trace is asingle gene. The bold lines are the mean of all genes
inthe group. Only hit genes are plotted. e, An example visualization of the signal
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Fig. 6| TMEM251 is essential for M6P-dependent trafficking of lysosomal
enzymes. a, GSEA of genes preranked by cosine similarity to TMEM251KO
morphology. b, Awaterfall plot of the distribution of cosine similarities to
TMEM251 morphology. Representative genes involved in glycosylation,
trafficking and lysosomal acidification are highlighted. c, TMEM251 localization
was examined in cells expressing fluorescent reporter of either GALNT2

(Golgi) or TMEM192 (lysosome) and stained for TMEM251.d, WGA and LAMP1
costaining of cells with KD of genes indicated. See Supplementary Fig. 1for other
perturbations. e.f, Quantification of lysosomal WGA staining after CRISPRi KD
of TMEM251, SLC35A2, UNGP2, GNPTAB, WDR7, VPS11, ATP6V1Gl1, ATP6API,
ATP6V1E1 (e) and IGF2R and M6PR (f). Plotted are the upper quartiles of median
per-cell lysosomal WGA intensity in two biological replicates. g, Abox plot of

CRISPRI target CRISPRi target

LAMP1-mScarlet fluorescence lifetimes, which correlates with lysosomal pH,
for theindicated perturbations. Each point represents the median lifetime of
lysosomal fluorescence in animage (n =30 for GNPTAB and TMEM251; n =15
for the remaining conditions; boxes and mid-lines indicate Q1, Q2 and Q3, with
whiskers marking the data points closest to and within 1.5% (Q3-Q1)). h,i, Log,,
fold-changes of glucosylceramidase and beta-galactosidase activity relative to
nontargeting controls for the indicated CRISPRi KDs. Each point represents the
per-cell total MFlin two biological replicates. The colocalization experimentin
cwas performed once, with ~150 cells imaged over 20 fields per condition. The
confocalimages in d are representative of two biological replicates. Statistical
analysis: two-tailed t-test versus nontargeting for e-i. BGal, beta-galactosidase;
LFC, log fold-change; NES, normalized enrichment score.

require M6PR for proper localization. Glucosyl cerebrosidase is recog-
nized by SCARB2, which in turn interacts with M6PR to traffic to the
lysosome®*, TMEM251, GNPTAB, ATP6V1Eland the M6PR/IGF2R double
KDsall reduced glucosyl cerebrosidase activity (Fig. 6h and Supplemen-
tary Fig. 1d). Beta-galactosidase activity was even more dramatically
impaired by these KDs (Fig. 6i and Supplementary Fig. 1e). During
preparation of this manuscript, two independent groups reported
the function of TMEM251 in the biogenesis of M6P and renamed
the protein LYSET***%. Our results independently support and
validate a role for TMEM251 in lysosomal protein trafficking through
the M6P-system.

Discussion

Pooled optical screens are a powerful new approach for generat-
ing high-dimensional genotype-phenotype maps with single-cell
resolution. Our studies demonstrate that these maps can now be
generated at scale, enabling the interrogation of genome-scale per-
turbation effects using standard laboratory equipment (a widefield
fluorescence microscope) and scalable, distributed open source
analysis pipelines. Notably, the cost is remarkably low per-cell pro-
file: ~US$0.001 per cell for the described HelLa datasets (including
labor, materials and analysis, but not equipment). This combination
of accessibility and cost effectiveness positions PERISCOPE-style
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screens as ademocratizing platform technology for linking genotypes
to cellular programs.

In addition to being practical, PERISCOPE generates rich, data-
driven representations of gene function. A central goal of massively
parallel genetic screens is to understand how genes coordinate to
produce complex cell phenotypes and, in this regard, PERISCOPE is
valuable both as a profiling technology—generating high-dimensional
representations of a cell state—and as highly parallelized screens of
subcellular biological parameters (for example, cell size and organelle
size, shape and number). We showcase the ability to reconstruct rela-
tionships between genes in biological pathways and proteins in com-
plexes using whole-cell optical profiles. Furthermore, we demonstrate
the potential to gain mechanistic insights into gene function through
spatially restricted subcellular phenotypes (TMEM251) and the clas-
sification of genes by function (V-ATPase assembly) using individual
morphological features.

Massively parallel CRISPR modifier screens have been proven
to be very useful for mapping gene-by-environment interactions at
scale. By enabling facile, cost-effective genome-scale screening with
high-dimensional cell profiling, we demonstrate that genetic pertur-
bations can be readily combined with environmental perturbations
to produce rich, high-resolution maps to systematically interrogate
gene-by-environment interactions at genome scale. As an example,
we show how such maps can uncover media-specific effects on cellular
programs, but we additionally envision using this platformto execute
genome-wide screens for modifiers of therapeutic compound-induced
phenotypes, or to carry out genetically anchored CRISPR screens® to
elucidate geneticinteraction networks.

Limitations, improvements and future applications

Now that the PERISCOPE technique is established, much can be done
to further optimize the workflow such that it is a routine assay. The
currentlaborrequiredis strongly correlated with the number of plates
processed. The enzymatic, staining and imaging steps take around
4 weeks for two scientists with access to two microscopes to complete
anine-plate A549 whole-genome screen. Image analysis and profile
generation require at least another 2 weeks with existing paralleliza-
tion. The number of plates is affected by cell size (for example, an A549
screenrequired roughly twice the number of plates asan HeLa screen)
and target cell coverage (a higher representation improves the signal
to noise ratio to enable detection of more subtle perturbations, and
lower Cas9 efficiency requires higher representation). Automation of
both wet laboratory and computational workflows has the potential
for a profound impact on throughput. If experimental modifications
thatreduce throughputarerequired, such as higher magnification for
imaging phenotypes, we suggest acompensatory modification such as
focusing only on expressed genes or using vector systems that reduce
the number of guides required.

In addition to improving cell coverage, the signal in PERISCOPE
screens can be further improved by refining the background distri-
bution through careful curation of negative control perturbations.
Here, we use nontargeting sgRNAs to identify gene-targeting sgRNAs
that produce significant morphological signal (a standard practicein
CRISPR screening?), and then take the further step of using all sgRNAs
targeting nonexpressed genes (Zero-TPMin the DepMap database) to
apply stringent FDR correction to our hit list. While this conservative
approach attempts to reduce the signal from a wide range of nonspe-
cificmorphological effects associated with CRISPR cutting (as opposed
to gene-specific KO effects), it relies on the accuracy of underlying
expression data. As we observe, genes with very low expression can
still produce morphological phenotypes when perturbed and, addi-
tionally, fitness effects can be induced by gene-independent activity
of sgRNAs targeting amplified genes*®, dampening the screen signal.
The use of a curated set of intergenic cutting sgRNAs could mitigate
this effect while still reducing nonspecific signal from CRISPR activity.

On a related note, though we have applied a strict 1% FDR threshold
to our data, we encourage users of these open source data to apply
their own judgment when selecting a FDR to balance the ratio of false
positives/negatives based ontheir specificapplications (for example,
discovery versus validation).

Beyond the current scope, there are several improvements that
could be built upon the foundation of the work presented here. In its
current form, the PERISCOPE platform could be deployed to explore
the effects of other CRISPR-based perturbations such as CRISPR-a**¢°,
CRISPR-i®"*? or base editing®®, where sgRNAs can be expressed as
an RNA Pol Il transcript (as in CROP-seq). In this study, we profile two
cancer cell lines, HeLa and A549, but our pipelines are amenable to
screening a wide variety of two-dimensional cell models, including
celllines and primary cells, though assay scale and data quality are cell
density dependent. Our screens demonstrate that significant signal is
presentinevery measured cell compartment, and highly multiplexed
imaging technologies suchas CODEX®® and CyCIF® could improve the
sensitivity and robustness of PERISCOPE by capturing a wider range of
perturbation effects or enabling theinclusion of ground truth epitopes
toanchor biological interpretation. Extracting biological signals from
fluorescence multicolor images is a compelling machine learning
problem, which will probably be improved using various forms of
deep learning, such as self-supervised learning, to extract features®s.
Though suchfeatures lackinherentinterpretability, whichisimportant
for some applications, they have proven to be more powerful than
engineered features for capturing similarities in some cases®’°.

Though we are able to extract meaningful biology from our
datasets, it is clear that our current cell coverage somewhat limits
the biology that can be extracted from our proof-of-principle data-
sets and thatincreased cell sampling should be considered for future
PERISCOPE screens, including improvements to the computational
workflow such that improved barcode calls” and cell assignments
result in fewer cells being filtered out. That being said, beyond the
biological validation we report here, new methods for quantifying
signal in large-scale screens validate that we have clear signal in our
Hela datasets’”and that they can outperform many other datasets as
sources of prior information for predicting the outcome of Perturb-seq
experiments’, supporting the utility of this resource.

In sum, this study lays the groundwork for building high-
dimensional morphology-based perturbation maps at scale and pre-
sents the first genome-scale atlas of human cell morphology. Contain-
ing more than 30 million perturbation-assigned cellimages, this atlas
isauseful resource for biological interrogation as well as for the devel-
opment and testing of new computational image analysis methods.
All data and analysis tools are open source and freely available (Code
availability and Data availability).

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41592-024-02537-7.
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Methods

Library design

The whole-genome library was designed to target 20,393 genes with
~4 sgRNAs per gene for atotal of 80,408 sgRNAs. Guides were selected
from a larger set (20 sgRNAs per gene) that was computationally
designed by the Broad Institute’s Genetic Perturbation Platform to opti-
mize predicted editing efficiency while ensuring that individual guides
were distinguishable by at least 2 bases in their first 12 nucleotides
(to facilitate error detection during ISS). Among the 80,408 sgRNAs,
47,792 sgRNAs are present in the Brunello CRISPR library (Addgene,
73179) and 20,520 sgRNAs are in the TKO V3 CRISPR library (Addgene,
90294). Additionally, 601 nontargeting sgRNAs were included as nega-
tive controls. All sgRNA sequences were selected/designed to main-
tain a balanced nucleotide distribution at each base position, which
facilitates optical barcode calling. The CRISPR library was designed
for complete library deconvolution with 11 bases and for Levenshtein
error correction with 12 bases.

Library cloning

To prepare pooled plasmid libraries, targeting and nontargeting guide
subpools were firstindividually amplified by dial-out PCR using ortho-
gonal primer pairs.”*. PCR products were purified using the QIAquick
PCR purification kit (Qiagen, 28104). The amplified libraries were
cloned into the CROP-seq vector (Addgene, 86708) via Golden Gate
assembly using BsmBlrestrictionsites as previously described”. To pre-
ventselfligation eventsin Golden Gate reactions, the CROP-seq vector
was predigested and purified via gel extraction using the QIAquick gel
extractionkit (Qiagen, 28706) toremove the filler sequence. The result-
ing plasmid libraries were purified and concentrated via solid-phase
reversibleimmobilization bead cleanup before being transformed into
electrocompetent cells (Lucigen Endura, VWR International, 71003-
038) for plasmid library amplification. Following transformation,
bacterial cells were grown in liquid cultures for 18 h at 30 °C before
extracting the plasmid DNA. The plasmid library was validated viaNGS
asdescribedin NGS.

Tissue culture

A549 cells were cultured in high-glucose DMEM (VWR International,
45000-304) supplemented with 2 mM L-glutamine (Life Technologies,
25030081), 100 U ml™ penicillin-streptomycin (Life Technologies,
15140163) and 10% heat-inactivated fetal bovine serum (FBS)
(Sigma-Aldrich, F4135-500ML). HEK293FT cells were cultured in
DMEM-GlutaMax, pyruvate (Thermo Fisher Scientific, 10569010)
supplemented with 10% heat-inactivated FBS and 100 U ml™ penicillin-
streptomycinand2 mM L-glutamine. HEK293FT cells were also cultured
without antibiotics 24 h before lentiviral packaging. HeLa cells in the
conventional mediascreen were cultured in DMEM (VWR International,
45000-304) supplemented with 10% dialyzed FBS (Thermo Fisher
Scientific, 26400044). HeLa cells in the physiological media screen
were cultured in HPLM (Thermo Fisher Scientific, A4899101) supple-
mented with10% dialyzed FBS.

Lentivirus production

Before lentivirus production, the plasmid pools for targeting and non-
targeting sgRNAs were combined resulting in a10% (mass/mass ratio,
m/m) of nontargeting sgRNAs and a 90% (m/m) of targeting sgRNAs. At
24 hbefore transfection, HEK293FT cells were seeded on 10 cm? dishes
at a density 0f 100,000 cells cm™ using antibiotic-free medium. The
lentivirus was generated using the Lipofectamine 3000 (Thermo Fisher
Scientific, L3000015) transfection kit and packaging plasmids pMD2.G
(Addgene, 12259) and psPAX2 (Addgene, 12260). HEK293FT cells were
transfected with a plasmid ratio of 2:3:4 (by mass) of pMD2G, psPAX2
and plasmid library, respectively. Media were exchanged 4 h after trans-
fection. The lentivirus was collected 48 h after media exchange and
filtered through a 0.45 um cellulose acetate filter (Corning, 431220).

The viral supernatant wasincubated in dry ice until frozen and stored
at—-80°C.

Lentivirus titering

Aviraltiter wasindividually determined for A549 and HeLa cells. A549
cells were seeded at a density 0f 100,000 cells cm™ while HeLa cells
were seeded at a density 0f 150,000 cells cm™in a 6-well format. The
seeded cells were transduced with the viral library by supplementing
their media with 8 pg ml™ of polybrene (Sigma-Aldrich, TR-1003) and
adding a variety of viral volumes ranging from O pl to 50 pl before
centrifugation at 1,000g for 2 h at 33 °C. After centrifugation, the
cellswere incubated at 37 °C for 4 h followed by a media exchange. At
24 h post-infection, cells were divided into media containing either
0 pg ml™or2 pg mi? of puromycin (Life Technologies, A1113803). Cells
in both media conditions were incubated at 37 °C for 72 h. Following
incubation, cells were counted and multiplicity of infection (MOI) was
estimated by theratio of surviving cells in the 2 pg ml™ puromycin con-
ditions over puromycin free conditions. Infectious units per microliter
(ifu pI™) were then calculated by multiplying the MOI by the original cell
seeding density and dividing by the viral volume added. The values of
ifu pl™ for each viral volume were averaged and used to estimate viral
volume required to achieve an MOl between 0.1and 0.3.

Lentivirus transduction

For screens, cells were transduced with the genome-wide viral library
in a 6-well format by adding 8 pg ml™ of polybrene and the volume of
viral supernatant calculated for an MOI of 0.2 as well as a noninfec-
tion control with O pl of viral supernatant. Cells were centrifuged at
1,000gfor2 hat33 °C.At4 hpost-infection, media were exchanged. At
24 h post-infection, the infected cells were passaged into T-225 flasks
(VWRInternational, 47743-882) containing media supplemented with
2 pg mi™ puromycin. A fixed number of cells (~300,000) for the infec-
tion and uninfected conditions were set aside and seeded in a 6-well
plate format under media containing either O pg ml™ or 2 pg mi™ of
puromycin. All cellswereincubated at 37 °Cfor 72 h. Following the 72 h
of selection, the cells seeded in the 6-well plate were counted and the
MOl was calculated as described above.

A549 screen

A549-TetR-Cas9 cells were transduced with the genome-wide viral
library in three biological replicates by seeding cells at a density of
150,000 cells cm™2in a 6-well format and performing lentiviral trans-
duction as described above. A total of 240,000,000 cells were trans-
ducedatan MOl of 0.2 foracell library representation of 300 cells per
sgRNA post transduction. After antibiotic selection, the cells were
culturedin conventional DMEM media for 2 days. Before induction of
Cas9 expression, asample 0of 25,000,000 cells per biological replicate
were lysed and prepared for NGS as described below. These samples
were used to confirm the target representation. Cas9 expression was
induced with 2 pg ml™ doxycycline spiked in conventional DMEM
medium. Throughout Cas9 expression, cells were cultured in T-225
flasks and passaged once the flasks reached 70% confluency. Between
passages, aminimum of 24,000,000 cells werere-seeded per biological
replicate thus maintaining a representation of 300 cells per sgRNA. The
cellswere supplemented with 2 pg ml™ of doxycycline every 2 days by
exchanging the culturing media. Onday 5 of Cas9 expression, the cells
were seeded into nine 6-well glass-bottom plates (Cellvis, P0O6-1.5H-N)
atadensity 0of 19,800 cells cm™. A total 0f 13,000,000 cells across the
threebiological replicates were seeded in optical plates with the expec-
tation that cell populations will double at least once before fixation.
The remainder of the cells were kept in T-225 flasks and cultured until
day7 of Cas9 expression where asample 0f 13,500,000 cells fromeach
biological replicate were lysed and prepared for NGS analysis. At48 h
after being seeded in optical plates, the cells were fixed with 4% para-
formaldehyde in1x PBS for 30 min, followed by ISS as described below.
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After rolling circle amplification (RCA) in ISS, the cells were stained
with cell compartment-specific probes as described in ‘Phenotypic
labeling” and phenotypic images were acquired. The disulfide-linked
probes were destained by cleaving the disulfide bridge between
the probe and its fluorophore with 50 mM TCEP (Thermo Fisher
Scientific, 363830100) in 2x saline-sodium citrate (SSC) for 45 min at
room temperature.

After destaining phenotypic probes, the cells are washed three
times with 1x PBS-T (1x PBS + 0.05% Tween-20) before performing 12
cycles of ISS.

HelLascreens

HeLa-TetR-Cas9 were transduced with the genome-wide viral
library in three biological replicates by seeding cells at a density of
210,000 cells cm™2in a 6-well format and performing lentiviral trans-
duction as described above. A total 0f 240,000,000 cells were trans-
ducedatanMOIl of 0.2 foracell library representation of 300 cells per
sgRNA post transduction. After antibiotic selection, the transduced
cells were cultured in conventional DMEM medium until a represen-
tation of 600 cells per sgRNA was achieved. To confirm the target
representation, a sample of 20,000,000 cells from each biological
replicate were lysed and prepared for NGS as described below. The
cell library was then divided into two culturing conditions, conven-
tional DMEM and physiological HPLM media (media formulations are
described above). Simultaneous to the addition of these two media
conditions, Cas9 expression was induced with 2 pg ml™ doxycycline
(Sigma-Aldrich, D5207) for 7 days. Throughout Cas9 expression, cells
for each condition were cultured in T-225 flasks and passaged once
the flasks reached 70% confluency. Between passages, a minimum of
24,000,000 cells were re-seeded per biological replicate thus main-
taining arepresentation of 300 cells per sgRNA for each media condi-
tion. The cells were supplemented with 2 pug mi™ of doxycycline every
2 days by exchanging the culturing media. On day 5 of Cas9 expres-
sion, the cell libraries under both media conditions were seeded into
five 6-well glass-bottom plates (Cellvis, PO6-1.5H-N) at a density of
42,000 cells cm™. A total of 14,000,000 cells across the three biologi-
cal replicates were seeded in optical plates for each media condition
with the expectation that cell populations will double at least once
before fixation. The remainder of the cells were keptin T-225 flasks and
cultured until day 7 of Cas9 expression, where asample 0f 20,000,000
cells from each biological replicate was lysed and prepared for NGS
analysis. At 48 h after being seeded in optical plates, the cells were
fixed with 4% paraformaldehyde in 1x PBS for 30 min, followed by ISS as
described below. After RCA amplificationinISS, the cells were stained
with cell compartment-specific probes as described in ‘Phenotypic
labeling” and phenotypic images were acquired. The disulfide-linked
phenotypic probes were destained by cleaving the disulfide bridge
between the probe and its fluorophore with 50 mM TCEP (Thermo
Fisher Scientific, 363830100) in 2x SSC for 45 min at room temperature.
After probe destaining, the cells are washed three times with 1x PBS-T
(1x PBS + 0.05% Tween-20) before performing 12 cycles of ISS.

Synthesis of destainable phenotyping probes

Due to the spectral overlap between the fluorescent dNTPs required
for ISS and the available fluorophores for phenotypic markers, the
probes used to label the mitochondria and the ER were synthesized
in-house toinclude a disulfide bridge between the probe and its fluo-
rophore that will allow for cleavage of the fluorophore after imaging.
For mitochondria labeling, the secondary anti-TOMM20 antibody,
F(ab’)2-goat-anti-rabbit IgG (H + L) (Thermo Fisher, 31239) was con-
jugated to Alexa Fluor 594-azide (Thermo Fisher, A10270). For ER
labeling, the protein ConA (Sigma-Aldrich, C2010) was conjugated to
cyanine 5-azide (Lumiprobe, B3030). In the synthesis of these probes,
weleveraged the thermal stability and high specificity of the click chem-
istry reaction between dibenzocyclooctyne (DBCO) and azide groups.

Hence, the anti-TOMM20 antibody and the ConA protein were function-
alized for click chemistry with the addition of an NHS-SS-DBCO mole-
cule (Sigma-Aldrich, 761532) that subsequently reacted with the azide
groups linked to their respective fluorophores. Before functionalizing
the probes, the anti-TOMM20 antibody and ConA protein were diluted
to1.1mgml™and 2 mg ml™infreshly prepared 0.1 Msodium phosphate
solutions at pH 8.5 and 6.8, respectively. The DBCO was freshly dis-
solved to 10 mg ml™ in anhydrous dimethylsulfoxide (Sigma-Aldrich,
227056). The diluted proteins and DBCO were combined at the follow-
ing molar rations (8 anti-TOMM20:1 DBCO and 3 ConA:1 DBCO) and
then incubated for 2 h at 4 °C while shaking. Following incubation,
the reaction was quenched with 2 M Tris-HCI (pH 7.4) at a10% reac-
tion volume. The resulting product was purified using Zeba columns
(Thermo Fisher, 89883). Product retention after column purification
was ~90%. The azide-linked fluorophores were diluted to 10 mg mi™
in anhydrous dimethylsulfoxide and reacted with their respective
functionalized probes at a 3:1 molar ratio. This reaction proceeded
for20 hat4 °Cwhile shaking; reaction vials were protected from light
duringthisincubation. The final product was purified by running each
reaction through three Zeba columns to do afinal buffer exchange into
1x PBS. After synthesis the destainable probes were stored at -20 °C.

ISS

The ISS of sgRNAs required three enzymatic steps, a targeted reverse
transcription (RT) of the sgRNA, the formation of a circular DNA
template (gap-fill and ligation) and the amplification of that tem-
plate through RCA. Before the enzymatic reactions, cells were fixed
with 4% paraformaldehyde (Electron Microscopy Sciences, 15714)
in 1x PBS for 30 min at room temperature and then permeabilized
with 70% ethanol (VWR International, 76212-358) for 30 min at room
temperature. To prevent sample dehydration after permeabiliza-
tion, the ethanol was removed over six serial dilutions with PBS-T (1x
PBS + 0.05% Tween-20). After permeabilization, the RT solution was
prepared and applied to the cells according to the following formu-
lation of 1x RevertAid RT buffer (Thermo Fisher, EP0452), 250 pM
dNTPs (NEB,N0447L), 0.2 mg mI™BSA (NEB,B9000S),1 uM RT primer
(G+AC+TA+GC+CT+TA+TT+TTAACTTGCTAT), 0.8 U pl'Ribolock
RNase inhibitor (Thermo Fisher, EO0382) and 4.8 U pl™ RevertAid H
minus reverse transcriptase (Thermo Fisher, EP0452). Cells in the RT
solution were incubated at 37 °C overnight.

Following RT, the cells were washed five times with PBS-T and
post-fixed with 3% paraformaldehyde and 0.1% glutaraldehyde
(Electron Microscopy Sciences, 16120) in 1x PBS for 30 min at room
temperature. After post-fixation, the cells were washed three times
with PBS-T. The gap-fill and ligation solution was prepared and added to
thecellaccording to the following formulation of 1x Ampligase buffer
(Lucigen, A3210K), 50 nM dNTPs (NEB,N0447L), 0.2 mg ml” BSA (NEB
B9000S),10 nM padlock probe (/5Phos/ GTTTTAGAGCTAGAAATAGCA
AGCTCCTGTTCGACACCTACCCACCTCATCCCACTCTTCAAAAGGAC-
GAAACACCG), 0.4 U pl™ RNase H (Qiagen, Y9220L), 0.002 U pl™ TaqIT
polymerase (Qiagen, P7620L) and 0.5 U pl™* Ampligase (Lucigen,
A1905B).

After gap-fill and ligation, the cells were washed three times with
PBS-T. The RCA solution was then prepared according to the following
formulation of 1x Phi29 buffer (Thermo Fisher, EP0094), 250 pM dNTPs
(NEB,N0447L),0.2 mg mI BSA (NEBB9000S), 5% glyceroland1 U pl™
Phi29 DNA polymerase (Thermo Fisher, EP0O094). The cellsinthe RCA
solutionwereincubated at 30 °C overnight. Following incubation, the
cellswere washed three times with PBS-T.

Phenotypic labeling

After RCA, the cells were prepared for phenotypic labeling by incu-
bating them with a blocking buffer containing 1% BSA (Seracare Life
Sciences, 1900-0016) in 1x PBS for 10 min at room temperature. After
blocking, aprimary staining solution containing rabbit anti-TOMM20
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antibody (Abcam, ab78547), Alexa Fluor 488 Phalloidin (ThermoFisher,
A12379), ConA-SS-A647 and WGA-A750 (WGA protein by Vector Labs,
L-1020-20, custom conjugation to A750 fluorophore by Arvys Proteins)
was prepared in 1x PBS and applied to the cells for 45 min at room
temperature. Following incubation with the primary staining solution,
the cells were washed three times with1x PBS-T and a secondary stain-
ing solution containing F(ab’)2-goat-anti-rabbit IgG (H + L)-SS-A594
was prepared in blocking buffer and applied to the cells for 30 min at
room temperature. The phenotypic probes for the primary and
secondary staining solutions were diluted according to the dilution
factors listed in Supplementary Table 4. Dilution factors for each
probe were determined before screening by doing a serial titration of
individual stains.

After incubation with the secondary staining solution, the cells
were washed with 1x PBS-T three times allowing the plate tositat room
temperature for 5 min between washes. Finally, the cells were placed
in a freshly prepared DAPI staining solution containing 200 ng ml™
DAPI (Sigma-Aldrich, D9542-10MG) diluted in 2x SSC. The cells were
incubatedin the DAPIstaining solution for 10 min at room temperature
beforeimaging.

Sequencing by synthesis

After destaining the phenotypic probes, the cells wereincubated with
asequencing primer (CACCTCATCCCACTCTTCAAAAGGACGAAACA
CCG) at1 M concentration in 2x SSC with 10% formamide for 30 min
at room temperature. Following this primer hybridization, the cells
were washed three times with PR2 buffer (Nano kit PR2) and thenincu-
bated with incorporation mix (Nano kit reagent 1) for 5 min at 60 °C.
The incorporation mix was then removed over six serial dilutions
with PR2 buffer. To decrease background fluorescence, the cells were
washed with fresh PR2 buffer and incubated at 60 °C for 5 min. The
washing process was repeated five times before adding 200 ng m1™
DAPI (Sigma-Aldrich, D9542-10MG) in 2x SSC and imaging.

Fluorescence microscopy

Phenotypic and ISS images were acquired using a Nikon Ti-2 Eclipse
inverted epifluorescence microscope with automated XYZ stage con-
trol, anIris 9 scientific complementary metal-oxide-semiconductor
(sCMOS) camera (Teledyne Photometrics) and hardware autofocus. All
hardware was controlled using NIS-Elements AR, and a CELESTA light
engine (Lumencor) was used for fluorescence illumination. Pheno-
typic images were acquired using a20x 0.75 numerical aperture (NA)
chrome-freeinfinity corrected (CFI) Plan Apo Lambda objective (Nikon,
MRDO00205) and the following Semrock filters for each phenotypic
probe: actin (phalloidin) emission ET530/30 nm, dichroic 495 nm;
mitochondria (TOMM20) emission 615/24 nm, dichroic 565 nm; ER
(ConA) emission 680/42 nm, dichroic 660 nm; Golgiand plasma mem-
brane (WGA) emission 820/110 nm, dichroic 765 nm; nucleus (DAPI)
dual-band emission 408/473, dichroic 408/473 nm. ISS cycles were
imaged using a 10x 0.45 NA CFl Plan Apo Lambda objective (Nikon)
with the following Semrock filters for each base: Miseq G excitation
543/4 nm, emission 575/30 nm, dichroic 555 nm; Miseq T emission
615/24 nm, dichroic 565 nm; Miseq A emission 680/42 nm, dichroic
660 nm; Miseq C emission 732/68 nm, dichroic 660. Laser power for
allacquisitions was kept at 30%. The exposure times for ISS cycles were
selected by balancing the average pixel intensities of ISS spotsineach
fluorescent channel.

NGS

NGSwas used for validation of plasmid libraries, cell libraries and Cas9
activity in screening cell lines. For Cas9 activity assays and cell library
validation, cell samples were lysed by resuspending cell pellets in lysis
buffer (10 mM Tris pH 7.5,1 mM CacCl,, 3 mM MgCl,, 1 mM EDTA, 1%
Triton-X100 and 0.2 mg mI™ Proteinase K) and heating for 10 min at
65 °C followed by 15 min at 95 °C. The target sequences in cell lysates

were directly amplified without cell lysis purification according to the
following PCRreactions: PCR1:1x Kappa HiFi, 0.15 uM CROP-seq-puro
P5 (CTGGAGTTCAGACGTGTGCTCTTCCGATCaagcaccgactcggtgecac),
0.15 tM CROP-seq-puro P7 (ACACGACGCTCTTCCGATCTtcttgtggaaa-
ggacgaaac), 2 ng pl™ gDNA from cell lysate, 28 PCR cycles. PCR 2: 1x
KappaHiFi, 0.25 uM P5 Truseq Indexing Primer FWD, 0.25 uM P7 Truseq
Indexing Primer RVD, 4 ng ul' PCR1product, 18 PCR cycles. Tempera-
ture conditions for PCR reactions followed initial denaturation at 95 °C
for 5 min, then denaturationat 95 °Cfor20 s, annealingat 55°Cfor30 s
and extension at 72 °C for 30 s. PCR 2 products were purified via gel
extraction using the Qiaquick gel extraction kit (Qiagen, 28706x4) and
prepared for sequencing as described in [llumina’s library denatura-
tion and dilution manual. The PhiX Control library was spiked in the
sequencing sample at10% (v/v) (Illumina, FC-110-3001).

Celllines

The A549-TetR-Cas9 cell line” was created by simultaneously trans-
fecting A549 cells with piggyBac transposase (HP137) and a piggyBac
cargo plasmid containing TetR-inducible Cas9 (Addgene, 134247), and
selecting for 7 days with 500 pg ml™ G418. Single cellswere sorted into
96-well plates (Sony, SH800) and expanded into colonies. An optimal
clone wasselected on the basis of Cas9 activity, aiming for high and low
activity inthe presence and absence of doxycycline, respectively. Cas9
activity was evaluated using the fluorescence based reporter pXPRO11
(Addgene, 59702), which expressed GFP and cognate sgRNA to assess
GFPKD uponsuccessful CRISPR activity. Fluorescence readouts of Cas9
activity were detected viafluorescence-activated cell sorting and indel
sequencing. The A549 parental cells were obtained from the American
Type Culture Collection (CCL-185). The HEK293FT cells used for viral
packaging were obtained from Thermo Fisher Scientific (R70007).
The HeLa-TetR-Cas9 cell line was a gift from lain Cheeseman; this
cell line is a single-cell clone selected for high Cas9 activity by
transducing with the eGFP reporter mentioned above (pXPRO11)
and using fluorescence-activated cell sorting to read out efficiency
of protein KD.

Image processing

We used CellProfiler bioimage analysis software (version 4.1.3)* to
process the images using classical algorithms and Fiji (with openjdk-8)
for image stitching” and cropping. For the ISS images, we corrected
for variations in background intensity, aligned channels within cycles
and performed channel compensation. For the phenotypic images,
we corrected for variations inbackground intensity. We then stitched
the ISS and Cell Painting images independently into a full-well view
and cropped them into corresponding pseudo-sites to account for
thefact that they were imaged at different magnifications. Corrected,
pseudo-siteimages from both ISS and phenotypicimages entered our
final analysis pipeline where they were aligned to each other, conflu-
ent regions (if present) were detected and masked out, nuclei and
cells were segmented using phenotypic images, ISS foci were identi-
fied and abarcode was called for each focus. Then, across the various
channels captured, we measured various features of cells across sev-
eral categories including fluorescence intensity, texture, granularity,
density and location (see http://cellprofiler-manual.s3.amazonaws.
com/CellProfiler-4.1.3/index.html for more details). We obtained 3,973
feature measurements fromeach of about 26.8 million (A549) and 46.4
million (HeLa) cells. We parallelized our image processing workflow
using Distributed-CellProfiler”® and Distributed-FIJI”’, triggered by
Lambda Functions in Amazon Web Services. The actual CellProfiler
pipelines used are available in the Cell Painting Gallery®*® (Code avail-
ability and Data availability) while continuously improved pipelines
and Lambda Function scripts are available at https://github.com/
broadinstitute/pooled-cell-painting-image-processing. Object seg-
mentation parameters are likely to need tuning by an image analysis
expert between datasets but feature extraction isinvariant.
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Image-based profiling

We processed outputs of CellProfiler into image-based profiles using
scripts available at https://github.com/broadinstitute/pooled-cell-
painting-profiling-recipe. This is highly configurable beyond the con-
figurations used for thisreport. The first step generates summaries of a
variety of quality control metrics about theimage acquisition, modified
Cell Painting and ISS. The second step uses Pycytominer workflows to
processthe single-cell features extracted using Cell Profiler. We median
aggregated the single-cell profiles by guide for each plate indepen-
dently. Next, we defined the center and scale parameters as the mean
and standard deviation of feature values by the standardized method
inPycytominer, and then normalized the averaged profiles by subtract-
ing the center value and scaling to the standard deviation for each
plate independently. We further processed the per-plate guide-level
profiles to create the per-screen profiles we use in our analyses. We
performed feature selectionindependently for eachscreento eliminate
noisy features and retain the most informative features by filtering out
redundant features (all features that have Pearson correlation greater
than 0.9 to a given feature), features with low variance, and features
with missing values across all the plates as is standard inimage based
profiling workflows”. Then we median aggregated each experiment’s
feature-selected per-plate profiles to obtain a unique profile per guide
foreach experiment. For perturbation-level (gene-level) profiles, each
experiment’s guide-level profiles were median aggregated.

Each dataset is independently welded to the recipe, effectively
versioning the recipe, using a template, available at https://github.
com/broadinstitute/pooled-cell-painting-profiling-template. Our
A549 screen datawith versioned recipe are available at https://github.
com/broadinstitute/CP186-A549-WG. Our Hela screens data with
versioned recipe are available at https://github.com/broadinstitute/
CP257-HeLa-WG. Code used for further profile processing is in this paper
repository at https://github.com/broadinstitute/2022_PERISCOPE.

Hit calling, statistical analysis and distribution of hits

To determine the genes with significant signal above the noise
(hit calling) we developed an algorithm to compare the distribution
of values per feature for all the guides targeting the same gene with a
set of nontargeting control guides using the Mann-Whitney U-test.
The number of features significantly different from the nontargeting
controls based on the statistical test (Pvalue of 0.001) wereadded up to
calculate profile score for each perturbation. Then, to ensure that the
perturbations called significant are truly not null, we defined a control
group called zero-transcript per million (TPM) genes. Zero-TPM genes
arethe genes withoutsignificant expressioninagiven celllineand were
determined based on the RNA expression levels reported by the Broad
Institute Dependency Map portal®’. To obtain aFDR of 1%, perturbations
with profile scores above 99% of zero-TPM genes were determined to
have significant signal above the noise. The terms ‘whole-cell hits’ and
‘compartment hits’were used to distinguish between perturbations with
significant signal in overall profile features or perturbations with tar-
getedsignalinfeatures fromaspecific cell compartment (based onone
of the five fluorescent markers). For whole-cell hits, all of the collected
features were used in the hit-calling process explained above, but for the
compartment hits, asubset of features from one cell compartment were
used (including texture, intensity, correlation, radial distribution and
granularity measures from that compartment). The hit-calling pipeline
described above wasalso utilized at FDR levels 2%, 3%, 4% and 5% to high-
light the number ofidentified hits at different stringency levels (Extended
Data Fig. 3a). It isimportant to note that a single perturbation can be a
compartment hit, targeting simultaneously two, or rarely even three,
compartments, butstillnotbe awhole-cell hit (Extended DataFig.4a,c,e).

mAP calculations
Mean average precision (mAP) was used to evaluate the similarity
between phenotypic profiles between guides targeting the same gene.

mAP is acommonly used performance metric in machine learning,
specifically for information retrieval tasks and it has been shown to be
avaluabletoolinvalidation of large-scale, high-throughout biological
profiling data.” From a group of N control profiles and a group of M
query profiles (M = 4 for each guide targeting the same gene), for each
query profile we calculate noninterpolated average precision (AP) by
following these steps:

(1) Selectasingle profile i from M query profiles.

(2) Calculate similarity of the profile i to all other (M-1) + N
profiles; we have used cosine similarity as the metric.

(3) Sort (M-1) + N profiles by decreasing similarity to the profile i.

(4) Ateachrank k going down the list, if k is a correct match, calcu-
late the precision at rank & for this rank.

(5) AP canbe be calculated via relative change in recall using the
following formula:

(M=1)+N

> (Rt — ROP
k=1

AP,' =

inwhich P, is precisionand TP, is true positive at rank k,

TPy
P =—*%
Tk
and R isrecall at rank k,
TPy
Rk - M_ 1.

Finally the mAP for the whole query group can be calculated by

1 M
mAP = — STAP,.
W AT

More details and the code used to calculate mAP is available on the
GitHubrepository.

Distribution of significant features based on gene sets
targeting each compartment

Pie charts showing the normalized fraction of number of features
significantly different from the control, categorized based on target
compartments (Fig. 2c). The values are the average from multiple genes
partof the highlighted gene groups.

Comparison between pairwise correlation of perturbations to
other databases

To assess the ability of phenotypic profiles to recall known biological
relationships, we calculated the correlation between profiles as a
measure of similarity and used it to perform two global assessments.
Considering the large number of features in each profile (1,520 in
A549,1,597 in HeLa DMEM and 1,709 in HeLa HPLM datasets) and to
improve the signal to noise ratio, principal component analysis (PCA)
was performed on the datasets to capture at least 90% of the varia-
tion, producing 334 (A549), 325 (HeLa DMEM) and 231 (HeLa HPLM)
new features. The resulting profiles were then used to calculate the
Pearson correlation coefficient between all hit perturbation profiles
(genelevel). First, annotated protein clusters were obtained from the
28.11.2022 CORUM4.0 database™. Clusters with at least 33% of the
hit genes were identified using the gene symbols from both datasets
(645 clusters in A549, 953 clusters in HeLa HPLM and 1,350 clusters in
HeLaDMEM). Then, allthe correlations between each pair of genesina
cluster were calculated. The distribution of all the correlations between
profiles within clusters versus the distribution of all the correlation
between profiles from all hit genes were plotted in Fig. 2d. Second,
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we performed a similar analysis based on the protein link scores as
predicted by the STRING database (v11.5,‘9606.protein.links.v11.5.txt.
gz)*. Tostart, protein IDs from STRING were mapped to gene symbols
using preferred_name extracted from the ‘9606.protein.info.v11.5.txt.
gz’ file. Allthe possible pairwise correlations between the hit gene pro-
filewithareportedlink scoreinthe STRING database were calculated.
Next, the correlations were binned into eight equally spaced bins and
the distribution of the STRING link scores for each bin were plotted
using seaborn.boxenplot® in Python.

Comparison to cancer dependency map data

From DepMap data, we divided genes expressed in HeLa cells into
essential and nonessential categories based on DEMETER2 gene
dependency scores™ using a threshold score of —0.5 for gene essenti-
ality and plotted the distributions of essential and nonessential genes
versus their morphological signal score (see below for the definition).

UMAP clustering of the hit perturbation profiles

To evaluate and demonstrate the ability of morphological profiles
to uncover biologically relevant interactions and structures, the
UMAP algorithm was used to project the hit gene profiles into a
two-dimensional plane. PCA was performed on the datasets to capture
atleast 90% ofthe variation as described above before the application
ofthe UMAP algorithm. The Python library UMAP was used to apply the
UMAP algorithm using ‘cosine’ for parameter ‘metric’. The details of the
parameters used are available on the GitHub repository. Some of the
resulting clusters were manually labeled to highlight some underlying
interesting biology using GO terms (biological processes and cellular
components) as listed on the GSEA-MSigDB web portal (http://www.
gsea-msigdb.org/gsea/msigdb/human/collections.jsp#CS5).

Hierarchical clustering of hit perturbation profiles and
representative heat maps

Correlations between morphological profiles is a powerful tool to
extract biological insights from datasets. For example, similarity (or
dissimilarity) contains information regarding functional clusters,
protein structure, signaling pathways and their directionality. To
this purpose, first, PCA was performed on the datasets to capture at
least 90% of the variation as described above followed by the selec-
tion of a subset of perturbations associated with a functional gene
set as specified in each instance. Then, the corr function from
the pandas library in Python was used to calculate the pairwise
Pearson correlation coefficient of the perturbation profiles for
each dataset. The hierarchical clustering of the correlations and the
plotting of the heat maps was performed using the seaborn’s cluster-
map function in Python. The ward variance minimization was used
as the clustering algorithm (‘method’) based on the ‘euclidean’ as the
distance metric.

For the combined heat maps used in Fig. 3e,f to compare DMEM
and HPLM screens, the above process was performed on one screen
as explained (with no heat maps generated at this step). Then, the
order of clustering was extracted from one screen and applied to the
other screen to enable two types of comparisons: direct comparison
between correlations from two screens and high-level structural
comparisoninthe clustered correlations. To effectively illustrate the
output, both sets of ordered correlations were merged into a single
heat map with the bottom left half representing one screen and the
top right representing the other, using the seaborn.clustermap®
functioninPython.

Preranked GSEA analysis of perturbations based on
morphological signal strength or similarity

To better understand the biological processes highlighted in each
HeLa screen and to compare the phenotypic downstream effects of
the environment on cells, preranked GSEA analysis was performed.

The analysis was performed on the GSEA v.4.2.3 Mac software and the
genes were ranked based on the morphological signal score using the
‘c5.g0.bp.v2022.1.Hs.symbols.gmt [Gene ontology] gene set database
with 2,000 permutations. The morphological signal score was calcu-
lated using this equation for each perturbation

n
morphological signal score =’ (- log(P value))).
i=1

The Pvalues were calculated as described in the hit-calling section, and
nrefersto features significantly different from the nontargetting con-
trols (Pvalue of 0.001). The code used to calculate the morphological
signal score as well as the list of perturbation scores for each dataset
isavailable onthe GitHub repository. The EnrichmentMap application
based on the Cytoscape v3.9.1software platform was used to visualize
the enrichment maps (node cut-off g value of 0.05).

Preranked GSEA analysis was performed to determine enrichment
for biological terms based on the morphological profile similaritytoa
query gene ofinterest. Genes were ranked based on cosine similarity to
the profile of the query gene, then GO term enrichment was performed
using the GSEApy package and the ‘GO_Cellular_Component_2021’
database.

Single feature screen analysis

Foreachfeatureinthe feature-selected dataset, genes were sorted by P
value (as generated during hit calling) and a top 20+ list was created for
each feature that contained all genes with a P value less than or equal
to that of the 20th gene. The top 20+ list was assessed for GO term
enrichment using the Python GOATOOLS library® with the default
Benjamini-Hochberg FDR correction. GO terms were considered
enriched if they had a P value of <0.05 after an additional Bonferonni
correction. Compartment-specific gene lists were assayed for enrich-
ment in the top 20+ lists using a Fisher exact test with a Benjamini-
Hochberg FDR correction from the Python SciPy library®. Plots were
made with Python library Matplotlib®'. For exploration of granularity
features, guide normalized but not feature-selected datasets were
aggregated with Pycytominer and plotted with Seaborn®.. Gene lists
were taken from the Metabolic Atlas®. Granularity features were visu-
alized with Python SciPy and scikit-image® libraries as implemented
in CellProfiler.

Atlas cell retrieval tool

Example single-cell image crops can be retrieved from any of the
screens using a retrieval script included in our paper repository at
https://github.com/broadinstitute/2022_PERISCOPE. Images are
retrievable by gene name or sgRNA barcode sequence and example
images canbe chosenrandomly or set to the most representative cells
for that barcode as determined by closest k-means clustering using
scikit-learn¥. Individual channel crops are from corrected images on
whichthe final analysis measurements are made. Mask crops are from
segmentations generated during the analysis pipeline and are filled
lightgray toshow the cell of interest and dark gray to show cells within
the same crop assigned to the same perturbation.

TMEMZ251 localization assay

HT1080 cells were transduced with lentiviral vectors expressing
either TagBFP-tagged GALNT2 (Golgi) or mRFP1-tagged TMEM192
(Ilysosome), and selected with antibiotics. Cells with stable integration
were fixed with 4% formaldehyde (15 min at 4 °C), permeabilized with
20 pg ml™ digitonin (30 min atroom temperature), blocked with 1% BSA
(30 min at room temperature) and incubated with primary antibody
against TMEM251 (HPA048559, Sigma-Aldrich; 1:200 overnight at 4 °C)
followed by Alexa Fluor 488-conjugated secondary antibody (1:1,000,
2 hatroom temperature). Samples wereimaged on the Phenix imager
(Perkin-Elmer) with a 63x objective in confocal mode.
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WGA/LAMPI1 costaining and quantification of lysosomal
glycanaccumulation followed by CRISPRi perturbations
HT1080 CRISPRi cells were transduced with sgRNA-expressing lentivi-
ral vectors and selected with antibiotics. For dual-target samples, cells
were transduced simultaneously with two vectors and coselected with
two antibiotics. At 8 days after sgRNA transduction and 2 days after
final replating, cells were fixed, permeabilized, blocked and stained
as above, using primary antibody against LAMP1 (ab25630, Abcam;
1:50) and Alexa Fluor 647-conjugated secondary antibody. Alexa Fluor
555-conjugated WGA at 1.5 pg ml™ and Hoechst 33342 at 5 pug ml™*
were included during secondary antibody incubation. Samples were
imaged on the Phenix imager (Perkin-Elmer) with a 63x objective in
confocal mode.

Image analysis was performed using the Harmony software
(Perkin-Elmer), where images were flat field corrected and regions
correspondingtothe nucleus, cytoplasm and lysosome were identified.
WGA signals that colocalized with the lysosomes were quantified by
the median fluorescence intensity (MFI) for each cell. Each biological
replicate (two per condition) was represented by the upper quartile of
the per-cell MFIs from all segmented cells.

Lysosomal pH measurement

HT1080 CRISPRi cells stably expressing rat Lamp1tagged with mScarlet
(onthelumenside) were transduced with sgRNA-expressing lentiviral
vectors and selected with antibiotics. Cells were imaged live, in an
environmental control chamber (OKO) at 37 °C and 5% CO,, 8 days
after sgRNA transduction and 1 day after replating intoimaging media
on an 8-well chambered cover glass (Cellvis, C8-1.5H-N). Imaging was
performed on an SP8 scanning microscope (Leica) in FLIM mode
using a100x objective. Samples were excited by a white light laser at
561 nmand 40 MHz, and emission collected between 590 and 700 nm.
Imaging media consisted of FluoroBrite DMEM (Life Technologies,
A1896701) +10% FBS + 1% GlutaMax (Gibco, 35050061).

Image analysis was performed usingin-house scripts, whichidenti-
fied lysosomal regions and the mean arrival time (lifetime) of photons
in each pixel. The median lifetime from all lysosomal pixels in each
field of view (consisting of one to two cells each, with >15 fields per
condition) was computed and represented as one data point per field
of view. After the initialimaging, 100 nM Bafilomycin Alwas added to
the nontargeting sample for a positive control, which was re-imaged
5hafter the treatment.

Lysosomal hydrolase activity assay
HT1080 CRISPRi cells were transduced with sgRNA-expressing len-
tiviral vectors and selected with antibiotics. At 9 days after sgRNA
transduction and 1 day after final replating, cells were assayed for their
lysosomal hydrolase activity by incubating with 0.2 pg ml™ Hoechst
33342 and either 200 uM PFB-FDGlu (for glucosylceramidase; Invit-
rogen, P11947) or 33 pM C,,FDG (for beta-galactosidase; Invitrogen,
12904) inimaging media for 1 hat 37 °C, before imaging on the Phenix
imager (Perkin-Elmer) with a 63x objective in confocal mode.
Imaging analysis was performed using the Harmony software
(Perkin-Elmer), where flat field-corrected images were segmented for
nucleus and cytoplasm. Total fluorescence intensity for each cell was
extracted, and eachbiological replicate (two per condition) wasrepre-
sented by the median of the per-cell fluorescence (MFI) from all seg-
mented cells, relative to the nontargeting controls, aslog,, fold change.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are publicly available. Phenotyping and ISS images and
image-based profiles are available in the Cell Painting Gallery®* on

the Registry of Open Data on AWS (https://registry.opendata.aws/
cellpainting-gallery/) under accession number cpg0021-periscope.
Instructions for retrieving images and profiles are available within
the Cell Painting Gallery documentation via GitHub at https://
github.com/broadinstitute/cellpainting-gallery. Image based
profiling data is welded to individual datasets using a template
availablevia GitHub at https://github.com/broadinstitute/pooled-cell-
painting-profiling-template. Itis processed with a recipe available via
GitHub at https://github.com/broadinstitute/pooled-cell-painting-
profiling-recipe. The recipe outputs for the datasets that we report
here are available via GitHub at https://github.com/broadinstitute/
CP186-A549-WG and https://github.com/broadinstitute/CP257-
HelLa-WG. The comparison between pairwise correlation of
perturbations to other databases was performed using the 28.11.2022
CORUMA4.0 database (https://mips.helmholtz-muenchen.de/corum/
download) and the STRING v11.5, ‘9606.protein.links.v11.5.txt.gz’
(https://version-11-0.string-db.org/cgi/download.pl?).

Code availability

All code is publicly available. The recipe outputs were further pro-
cessed to generate the profiles analyzed in this paper. Code for
the final processing and the creation of all figures in this paper are
available via GitHub at https://github.com/broadinstitute/2022_
PERISCOPE. The exact CellProfiler pipelines used in the screen are
available in the Cell Painting Gallery®, while continuously improved
image analysis pipelines and AWS Lambda scripts used to trigger
them are available via GitHub at https://github.com/broadinstitute/
pooled-cell-painting-image-processing.
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Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Cell 1: CCACGGTCATGA Cell 11: GCTGTTTCTGAC

Cell 111: Multiple barcodes, filtered out

Extended Data Fig. 1| Example barcode calling based on twelve in-situ cycles. An example of a group of cells tracked over the twelve cycles of in-situ sequencing to
call barcodes. Cells 1 and Il highlight how the signal from fluorescent nucleotides are translated into abarcode read over twelve cycles.
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Extended Data Fig. 2| Technical summary of the HeLa whole genome screens.
The distribution for the number of cells per gene and per guide presentin the
HelLa DMEM (a) and HPLM (b) dataset. (c-d) The distribution of normalized
mean intensity in the mitochondrial channel from guide aggregated profiles
inHeLa DMEM (c) and HeLa HPLM (d). Every dot overlaid on the boxplots
represents a sgRNA (n=4 for guides targeting the TOMM20 gene and n=450 for
nontargeting guides). The boxplots display the data as a distribution where the
box spans from the first to the third quartile with the median as the center line.
The whiskers extend to the maximum range of the distribution within 1.5 times
theinterquartile range. (e-f) Comparison of the relative abundance of sgRNA

barcodes as quantified by NGS or in situ sequencing in HeLa DMEM (R*= 0.89) (e)
and HeLaHPLM (R?=0.92) (f), n=75,000. Comparison of the relative abundance
ofbarcodes as quantified by in situ sequencing among 3 different biological
replicates representing individual viral transductions in HeLa DMEM (R,,,,> = 0.97,
Ryio3>=0.95, Ry032=0.96) (g) and HeLa HPLM (Ry,,2 = 0.97, Ry52 = 0.96, R,5° = 0.96)
(h), n=84,000. The correlation coefficients in (e-h) are calculated using Pearson
correlation, and the solid black line represents a linear regression fit of the data,
with the shaded region around the regression line indicating the 95% confidence
interval calculated using the standard error of the regression.
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= HeLa DMEM

Extended Data Fig. 5| Clustering by optical profiles from all hit perturbations gene profiles come from the hit perturbations from HeLa DMEM (a), HeLa HPLM
from whole genome screens. Heatmaps representing Pearson’s correlation (b), and A549 (c) datasets. High resolution versions are available at https://github.
between gene profiles after hierarchical clustering using Ward's method. The com/broadinstitute/2022_PERISCOPE.
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Extended DataFig. 6 | Hierarchical clustering of high dimensional Pathway forms clusters where the correlation/anti-correlation in morphological
morphological profiles captures physical interactions and signaling pathway profiles recapitulates the known activatory/inhibitory effects of genes, as
relationships in HeLa DMEM data. (a) Ribosomal genes show enrichment annotated. Heatmaps are of Pearson’s correlation between gene profiles after

in clusters that recapitulate known protein complexes as highlighted in the hierarchical clustering using Ward's method.

heatmap. Ribosome image created with Biorender. (b) The PI3K/AKT Signaling
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Extended Data Fig. 8| Technical summary of the A549 whole genome screen. data, with the shaded region around the regression line indicating the 95%
(a) Thedistribution for the number of cells per gene and per guide present in confidence interval calculated using the standard error of the regression. (f) The
the A549 dataset (not including nontargeting guides). (b) Comparison of the distribution of normalized mean intensity in the mitochondrial channel from
relative abundance of barcodes as quantified by NGS or in situ sequencing guide aggregated profiles in the A549 dataset. Every dot overlaid on the boxplots
(R?=0.84),n=65,000. (c-e) Comparison of the relative abundance of barcodes represents a sgRNA (n=4 for guides targeting the TOMM20 gene and n=450 for
as quantified by in situ sequencing among 3 different biological replicates nontargeting guides). The boxplots display the data as a distribution where the
representing individual viral transductions (Ry;,> = 0.85, Ry05>=0.85, R, =0.94),  boxspans from the first to the third quartile with the median as the center line.
n=80,000. The correlation coefficients in (b-e) are calculated using Pearson The whiskers extend to the maximum range of the distribution within 1.5 times
correlation, and the solid black line represents a linear regression fit of the theinterquartile range.
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Extended Data Fig. 9| Guide representation affects profile strength and
similarity in pooled CRISPR screens. Mean average precision (mAP) was
calculated at different representation levels subsampled from Funk et al.'’ by
scoring each guide's ability to retrieve other guides targeting the same gene from

the pool of all non-targeting guides based on cosine similarity (see Methods for
calculation). mAP is a proxy for profile strength and similarity. Highlighted points
represent mAP at specified mean guide-level representation from the PERISCOPE
datasets for comparison.
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Extended Data Fig. 10 | Examples of single cell images with strong
morphological profiling phenotypes detected in individual channels.
Representative single cellimages showing each of the acquired channels, a
five-color merge, and cell mask for non-targeting control (a) and five specific
perturbations (b-f) from the HeLa DMEM dataset. Representative perturbations
from gene sets highlighted in Fig. 2c were selected for having a large number of

Mask
E.RL Merge  downsample

significantly perturbed features in a specific channel (red box) and therefore
showing a strong phenotype by morphological profiling that may or may not
be visible by eye. Representative cells are shown with light gray shading in Mask
downsample panel and neighboring cells with the same perturbation are shown
withdark gray shading.
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Data collection  Phenotypic and 155 images were acquired using a Nikon Ti-2 Eclipse inverted epifluorescence microscope, and included Nikon NIS Elements
AR software (version 5.42.01).

Data analysis We used Cell Profiler bioimage analysis software (version 4.1.3) to process the images using classical algorithms and Fiji (with openjdk-8) for
image stitching and cropping. We processed outputs of Cell Profiler into image-based profiles using scripts available at https://github.com/
broadinstitute/pooled-cell-painting-profiling-recipe. Each dataset is independently welded to the recipe, effectively versioning the recipe,
using a Template, available at https://github.com/broadinstitute/pooled-cell-painting-profiling-template. Code used for further profile
processing is in this paper repository at https:// github.com/broadinstitute/2022_PERISCOPE. The EnrichmentMap application based on the
Cytoscape v3.9.1 software platform was used to visualize the enrichment maps (node cutoff Q-value 0.05).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All code and data are publicly available. Phenotyping and in situ sequencing images and image-based profiles are available at the Cell Painting Gallery on the
Registry of Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/) under accession number cpg0021-periscope. Instructions for retrieving images
and profiles are available within the Cell Painting Gallery documentation at https://github.com/broadinstitute/cellpainting-gallery. Image based profiling data is
welded to individual datasets using a template available at https://github.com/broadinstitute/pooled-cell-painting-profiling-template. It is processed with a recipe
available at https://github.com/broadinstitute/ pooled-cell-painting-profiling-recipe. The recipe outputs for the datasets that we report here are available at https://
github.com/broadinstitute/CP186-A549-WG and https://github.com/broadinstitute/CP257-Hela-WG. Comparison between pair-wise correlation of perturbations to
other databases was performed using the 28.11.2022 CORUM4.0 database (https://mips.helmholtz-muenchen.de/corum/download) and the STRING v11.5,
“9606.protein.links.v11.5.txt.gz” (https://version-11-0.string-db.org/cgi/download.pl?).
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Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
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Sample size No sample size calculation was performed, we screened as many cells as we could fit in 6-8 6-well plates. This number of plates was
determined to be the largest number we could screen concurrently with available personnel and equipment.

Data exclusions  No data were excluded from analysis, except cells that were filtered out because we couldn't assign them a perturbation barcode.
Replication All screens were executed in three independent biological replicates, and all attempts at replication were successful.
Randomization Not applicable. Control and non-control perturbations are measured simultaneously at genome-scale and analyzed in automated fashion.

Blinding Not applicable - Data analysis was performed in an automated manner using pipelines described in the paper.
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Antibodies
Antibodies used Anti-LAMPI antibody [H4A3] (ab2S630), abeam. Anti-TOMM20 antibody - Mitochondrial Marker (ab78547), abcam. Anti-TMEM251
antibody (HPA048559, Sigma-Aldrich)
Validation anti-lampl validation provided by abcam: ICC, IHC, and Western blot. anti-TOMM?20 validation provided by abeam: ICC, IHC, and

Western blot. anti-LAMPI was additionally checked for specificity against another LAMPI primary antibody (CST), and anti-TOMM?20
was checked against MitoTracker Deep Red. anti-TMEM251 validation provided by Sigma-Aldrich: ICC, IHC, and Western blot.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HT1080: ATCC. A549 (male lung cancer): ATCC. Hela (female cervical cancer): lain Cheeseman (MIT/Whitehead), parental line
sourced from ATCC. HEK293FT: Thermo Fisher Scientific.

Authentication All cell lines were authenticated using ATCC's human STR profiling service
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified lines were used in this study.
(See ICLAC register)




	A genome-wide atlas of human cell morphology

	Results

	High-dimensional optical CRISPR screens at genome scale

	Morphology-based genome-wide perturbation maps in HeLa cells

	Comparing gene-by-environment interactions at genome scale

	Morphology-based genome-wide perturbation maps in human lung cancer cells

	Genome-wide screens for subcellular phenotypes of interest

	TMEM251/LYSET is essential for lysosomal enzyme trafficking


	Discussion

	Limitations, improvements and future applications


	Online content

	Fig. 1 Pooled optical screens with PERISCOPE.
	Fig. 2 Summary of the results from two PERISCOPE screens at the whole-genome scale performed in HeLa cells in two growth media (DMEM and HPLM).
	Fig. 3 PERISCOPE identifies media-specific perturbation signatures.
	Fig. 4 A genome-wide perturbation map in A549 cells.
	Fig. 5 Identifying biological pathways using individual subcellular image features.
	Fig. 6 TMEM251 is essential for M6P-dependent trafficking of lysosomal enzymes.
	Extended Data Fig. 1 Example barcode calling based on twelve in-situ cycles.
	Extended Data Fig. 2 Technical summary of the HeLa whole genome screens.
	Extended Data Fig. 3 Number of hits and levels of guide similarity at different false discovery rates for the HeLa DMEM screen.
	Extended Data Fig. 4 Hit genes can be called in multiple channel combinations.
	Extended Data Fig. 5 Clustering by optical profiles from all hit perturbations from whole genome screens.
	Extended Data Fig. 6 Hierarchical clustering of high dimensional morphological profiles captures physical interactions and signaling pathway relationships in HeLa DMEM data.
	Extended Data Fig. 7 Morphological signal score is not well correlated with gene dependency or baseline gene expression.
	Extended Data Fig. 8 Technical summary of the A549 whole genome screen.
	Extended Data Fig. 9 Guide representation affects profile strength and similarity in pooled CRISPR screens.
	Extended Data Fig. 10 Examples of single cell images with strong morphological profiling phenotypes detected in individual channels.




